


fHow does a percolator work:

' How Espresso Machines Work

Spout

Eilter,

Boiling Water

http://home.howstuffworks.com/espresso-machine2.htm
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Although coffee grains do not sit at the sites of a regular
lattice, we will first study percolation on regular lattices



hle networks

3 dimensions:

We assume they are very (infinitely) large
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% of the sites

Complementary view:
present

40X40 square
lattice,20% of the
sites randomly
removed.

30

5 10 15 20 25 30 35 40

0




BE 8 8 SNEEEE B
' LT
seke 8 @ b ooto
B Y O T e T
. s, 88 .mm k8 spes
L e RS W B ]
S e &
anl seeh ek & b @
e e T L
Teas mE . ® m.e weh B 8, &
I B 8 . 8, wes, ® w8
sen sew ' sese » -
L LT e
R I e e
wah & | sssshs ssh & shes
EOE B BE. 8 8,88 8,08
. e o e
.o

.* e *.

10 15 20 25 30 35 40

5

el B ansshasnahes o

0

S
-
<
(9]

(<))

o
~~

()

—

>
-—

()

()
=l
~

c
S
=
©

(®)

(&)

—_

()
o
=~

n

>
e

o

o

£

(@)

(&)
=
X

=]

(&)

Q]

[

>
©

o

o

o

W
=

o
=
e

oo.r oo.
EITTH .-_-:-.-__T-.-_-:-_.v

EEE SRS S EEE
e 88 8 B8 S8 bes

10 15 20 25 30 35 40

5

pesp e Pt S} Spuve sp o proes
N o wm o wn o ownm o
m m ™~~~

A

0




pi 2d or empty. We occupy nodes
constant Independent probability called

nodes, which can be reached from each
y paths through occupied nodes are called
or

Below a there is no infinite
cluster (component) of occupied nodes, above it
there is.












Twenty largest clusters shown
In different colors (the smaller
ones are all colored yellow)
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p <P,

We are close to the threshod,
there are large clusters
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thresholc there is no infinite
of occupied nodes, above it

fferent clusters shown In
different colors

p > P,

The “infinite” (spanning)
cluster is the white one.
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Percolation probabilit

IS the probability that a
randomly chosen occupied node belongs to the infinite
cluster. In other word: P., is the relative weight or
density of the infinite cluster.

Below p, clearly P, = 0.
Above p. It starts to grow
and becomes 1 atp = 1.

Note non-linearity!



.l A A 7~ | = l A » ! | A
Percolation applet

s.buffalo.edu/gonsalves/Java/P



hercolatior

The orchard
“problem: What is the
_ optimal distance
‘between the trees”

' Probability p of the
_mtransmission of
' disease decreases

b, W|th distance

If the distance is too close (p > p.) the disease spreads
over the whole orchard!



http://pages.physics.cornell.edu/~myers/teaching/ComputationalMethods/ComputerExercises/Percolation/Percolation.html






Percolation model can be

)

defined on any (infinite

graph

2004)

(

: Thin Solid Films 486, 125-128

D.Vanderbilt et al.



Connectivity lengtt

For p < p. we have first only small, isolated clusters.
000 6 © © ® 000 ©
O Q O Q

...f. ... :.

p =0.36 < p,

¢ Is the characteristic size of the clusters.
It increases as p, Is approached



Connectivity lengtt

¢ Increases as p, is
approached

'L T ] and it grows beyond any limit
® 00



Connectivity lengtt

irt from the other limit?

p=0.8>p, p =0.63>p,
¢ Is now the characteristic length of the clusters
Again, as we approach p, it grows




At the critical point
Ivity length ¢ is infinity!

There is no characteristic
length in thte system; it is

The Incipient infinite cluster is
very ramified, with holes on
every scale, where the finite
clusters sit in.

® O 000
000 0000
p =0.59 = p,



a characteristic length a scale
sformation causes clear changes: The transformed
t will be different from the original one.

» presence of a scale, we can tell “how far we are”
e object.

e e

Photo by Matt Benton



a characteristic

effect. The transformed object will
Inal one.

ence of a sca e cannot tell “how far we

he object.



Initiator
Length=1

In the asymptotic
limit it is a strange
enerator - .
Longth=4/3 objec_t. No scale,
self similar

Level 2
Length=16/9

Lewvel 3
Length=64 727 . *

AT .t.t.i.

Koch curve: extremely ramified object N -




All other lengths = const * a
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The length of a coastline

-

Length depends on
the yardstick!



Measuring the length

Length (area, volume) when taking
finer and finer measuring tools.

Put a grid of mesh size { onto the object.
Count the number of boxes N({) covering the
object.

L ford=1

A ford=2
V ford=3

For the highly (infinitely) ramified
objects the measure



actal dimension
ash onto the object.

D = —lim[log N (£)/log /]
£—0

. Hausdorff dimension: For Euclidean
objects, D=d
Objects are embedded into an Euclidean space of

dimension d, and have a topological dimension d,

d,<D<d, Ifd, <D the objectis a and
D is the FRACTAL DIMENSION



Fractal examples

S Koch curve

Length=4/3

Level 2
Length=16/9

D = -lim (log N(9 /log /) =log 4 / log 3

N Sierpinski gasket
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Fractal examples

Beautiful video

http://www.youtube.com/watch?v=VtsAduik
mQU



Growing fractals

M : ,mass” of the
object

R : linear extent

M ~ RP

D = lim [log M(R)/ log R]

R—oo



i)ematical vs physical fractals

ally either way a limit is taken:

is needed for perfect self-similarity

1ysics two problems:

perfect self-similarity because of randomness
yotatistical self-similarity”, D can be measured
(percolation)

2. Neither limits can be carried out in practice

There is always a lower and an upper cutoff



Finite size effects

Typical plot

e

log M

Finite size effect

. : log R
Scaling regime :

Rule of thumb: Scaling regime > 2 decades



olation cluster at threshold

At p, its density is O
but it exists!

How is this possible ?

P=p,
M/R? = P_(R)
M ~ RD<d




Incipient infinite cluster

Random fractal: M ~ RP

® 00
.8.88 )
000 00 Power law function: linear on

®
28802 log-log scale




e freeness and power laws

nown functions:

e arguments (x) must be dimensionless.

If a distance is involved, a characteristic

size must be present:
X=r/¢

If time is involved, a characteristic time is
needed to make the argument

dimensionless: x =t /r

There Is one exception: power laws



ale freeness and power laws

)ne exception: power laws

t does scale invariance mean mathematically?

For any (positive) a
(order k homogeneous function)

f(ax)=a"f(X)

of (aX)
do

NNCIENI04] With the solution:

= xf'(ax) = ko' f(X)



Power laws at criticality

A basic quantity in percolation is the number of s-size clusters
per site: ng

, - 1of s-sizeclustes BERIUATETERN S [ 9 is the total number of sites.

The pro
size s is

ablllt that an occupied site belongs to a cluster of
m Conservation of prob.: Zps +P +(1-p)=1

The average size S of finite clusters is

There Is an intimate relationship between thermal cri Ica pheno-
mena and the percolation transition, which can be established
using the theory of diluted magnets as well as that of the Potts
magnetic modelscorresponds to the magnetization (order
parameter), S to the susceptibility with p being the control
parameter (~temperature). There is possibility to introduce the
analogue of the magnetic field (ghost site).



ynnectivity function C(r) is the probability that two
sites belong to the same finite cluster. It is a
homogenous function of its variables and the
ngth & diverges at p_.as

even the notation reminds to the thermal phase transitions.
IS not surprising that we have:

iIndicating that S plays the role of the susceptibility (no wonder, it
contains the second moment of ny).

The key task in simulating percolation systems is cluster
counting, I.e., calculating ng-s.



jon function—=> connectivity function:
ility that two site at distance r belong to the same

ol Oj_pry)
_ 1 =2 connectivity length: Characteristic size
tuations = size of finite clusters.

= |p—pc| ™" =1/v
yrder parameter) §=|p—pcl y=

the linear dimension of the system. The critical point

is p= —0. Due to scaling:

P(p-py L)'= (p-pPP((p-p)/LY) 2 P(p=p,L)~L+#¥
XD ~L7 M~ LP
P,(p) ~p-p) M=P_ L4
e~ pg™ D=d-f/v
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Exponents are
There are of systems for which they are the same

E.g., for lattices they depend only on the but
not on

- Type (site or bond)
- Lattice (triangular, square honeycomb etc. )



il -1a%

lon Is the paradigmatic model for

ness. The connectivity length is the

_ 1ze of finite clusters and it diverges
‘when approaching the critical point. At the
critical point there is no characteristic length
~ In the system (scale freeness).

ale free geometric objects are self similar
fractals. Their mass depends on the linear size
of observation as M ~ RP. The percolation
Incipient infinite cluster is a random fractal

- The mathematical description of self-similarity and
scale freeness is given by power law functions.
Exponents are universal within unv. classes.



"Home work

fractal dimension of the Sierpinski

e the Java ap to study the size dependence
in square site percolation. Make a statistics
about the occurrence of the spanning cluster as
a function of the system size and try to

e the proper critical value for the infinite

\ system.

' http:/ /www.physics.buffalo.edu/gonsalves/Java/Percolation.html

E-learning: http:/ /newton.phy.bme.hu/moodle/



