Simulations in Statistical Physics

Course for MSc physics students

János Kertész

Lecture 11

Simulation of granular material (molecular dynamics $=$ granular dynamics = distinct element method)

- Macroscopic particles (have temperature, pressure)
- Short range asymmetric interaction
- Dissipative collisions
- Friction

Rigid particle model: Angular momentum and friction has to be considered

Event driven

Perfect slip (no role of angular momentum)

$$
\begin{gathered}
\text { Define „effective mass": } \begin{array}{|c}
m_{e f f}=\frac{m_{i} m_{j}}{m_{i}+m_{j}} \\
\overrightarrow{\Delta p_{n}}=-2 m_{\text {eff }}\left[\left(\vec{v}_{i}^{\text {before }}-\vec{v}_{j}^{\text {before }}\right) \vec{n}\right] \vec{n} \\
\vec{v}_{i}^{\text {after }}=\vec{v}_{i}^{\text {before }}-\frac{\overrightarrow{\Delta p_{n}}}{m_{i}}, \quad \vec{v}_{j}^{\text {affer }}=\vec{v}_{j}^{\text {before }}+\frac{\overrightarrow{\Delta p_{n}}}{m_{j}}
\end{array} \\
\end{gathered}
$$

For stick condition conservation of angular momentum has to be considered

Inelastic collisions are characterized by the restitution coefficient
$r=\frac{E(\text { out })}{E(\text { in })}=\left(\frac{v(\text { out })}{v(\text { in })}\right)^{2}=e_{n}^{2}$

Similarly, a coefficient for the tangential component can be introduced.
$\left(\mathbf{v}_{j}^{\text {affer }}-\mathbf{v}_{i}^{\text {after }}\right) \cdot \mathbf{n}=-e_{n}\left(\mathbf{v}_{j}^{\text {before }}-\mathbf{v}_{i}^{\text {before }}\right) \cdot \mathbf{n}$
$\Delta \mathbf{p}=-m_{\text {eff }}\left(e_{n}+1\right)\left[\left(\mathbf{v}_{j}^{\text {before }}-\mathbf{v}_{i}^{\text {before }}\right) \cdot \mathbf{n}\right] \cdot \mathbf{n} \quad$ for perfect slip

Finite time singularity (inelastic collapse: numerical instability):

How long does it take until it stops?

$$
t_{\text {ot }}=\sum_{j} t_{j}=2 \sqrt{\frac{2 h^{\text {minital }}}{g}} \sum_{j} \sqrt{r^{j}}=2 \sqrt{\frac{2 h^{\text {mintal }}}{g}}\left(\frac{2}{1-\sqrt{r}}-2\right)
$$

∞ number of collisions in finite real time.
Event driven simulation does not work.
http://www.haverford.edu/physics-astro/Gollub/vib_granular/inelastic/inelastic.html

Ways out:

- Change r with the velocity (physics) $r \sim(\Delta v)^{1 / 5}$
- Use soft potential and time steps
- Use different technique (Contact Dynamics)

Soft potential with finite time steps

Viscoelastic model: $\quad F=\theta(-x)(-k x-\dot{x})$

Hertzian contact: Even material with linear properties will be nonlinear. For pure elasticity:

$$
F_{n}^{\text {elastic }}=A \xi^{3 / 2} \theta(\bar{\xi})
$$

Where A depends on the elastic moduli and the particle radius.

$$
F_{n}^{d i s s}=B \sqrt{\xi} \dot{\xi} \theta(\bar{\xi})
$$

B determines r
Similar, more complicated expressions are valid for F_{t}

Coulomb friction with rigid particles:

$$
\begin{array}{|lll}
\left|f_{s}\right| \leq \mu_{s}\left|f_{n}\right| & \text { if } & v_{s}=0 \\
\left|f_{s}\right| \leq \mu_{d}\left|f_{n}\right| & \text { if } & v_{s} \neq 0
\end{array}
$$

static case dynamic case

Non-smooth dynamics
Signorini-Graph: perfect volume exclusion (perfectly rigid particles)

Coulomb-Graph: friction between particles with relative tangential velocity v_{s}

Contact dynamics

Shear

http://www.ph.biu.ac.il/~rapaport/java-apps/grshear.html

Vibrating plate

http://www.ph.biu.ac.il/~rapaport/java-apps/grvib.html

Algoritmikusan definiált modellek: Fraktál növekedés

Elctrochem. deposition

Mineralization

Surface crystallization

Disordered viscous fingering Bacterial
colony
growth

Basic equations:

$$
\begin{array}{ll}
\nabla^{2} u=0 & u \text { scalar field }(T, P, c \ldots) \\
\left.\mathbf{v}\right|_{\Gamma}=-\left.C \nabla u\right|_{\Gamma} & \mathbf{v} \text { velocity of the interface } \Gamma \\
\left.u\right|_{\Gamma}=f(\nabla u, \kappa) & \kappa \text { curvature (cutoff) } \\
+ \text { disorder } &
\end{array}
$$

Laplacian or gradient governed groth:
If there is a bump, the gradient increases (c.f. electrostatic peak effect) the bump grows... instability

+ screening:
If 2 bumps grow, the faster will screen
the slower and stop its growth

Simple model: Diffusion limited aggregation (DLA) Start with a seed particle forming the initial aggregate. * Another particle comes from infinity via a random walk until it sticks to the aggregate.

http://apricot.polyu.edu.hk/dla/dla.html

100 million particles
Coarsened
Self-similar structure

1 million particles

In order to simulate (relatively) large samples tricks are needed

- No need to start from infinity: Birth ring sorrounding the aggregate
- No need to let the particles walk far away: killing ring
- If far from the aggregate: large steps possible

For very large ($>10^{7}$) particles more tricks (fitted step size, dynamic storage)

Why are so terribly large aggregates needed?
Self similar fractals, scaling \rightarrow asymptotic behavior
How to measure fractal dimension?

Dimensions

- Topological dimension:

Point: $d_{t}=0$, moving point: $d_{t}=1$, moving line, $d_{t}=2 \ldots$

- Embedding dimension:

Number of independent directions

- Hausdorff (fractal) dimension

Area A is mesured by covering the object with squares of size ℓ^{2}. \# of such boxes: N_{ℓ}.

$$
\begin{aligned}
& A=\lim _{\ell \rightarrow 0} \ell^{2} N_{\ell} \\
& L=\lim _{\ell \rightarrow 0} \ell^{1} N_{\ell}
\end{aligned}
$$

In general:

$$
M=\lim _{\ell \rightarrow 0} \ell^{d_{t}} N_{\ell} \quad M: \text { mass }
$$

For a fractal this definition does not lead to a good result (0 or ∞)

$$
\begin{aligned}
& \ell=\left(\frac{1}{3}\right)^{n} ; N_{\ell}=4^{n} ; d_{t}=1 \\
& M=\lim _{n \rightarrow \infty}\left(\frac{4}{3}\right)^{n}=\infty
\end{aligned}
$$

Instead of using d_{t} find the appropriate D fractal dimension such that

$$
M=\lim _{\ell \rightarrow 0} \ell^{D} N_{\ell} \quad \text { is finite! }
$$

$$
\text { Here: } D=\frac{\ln 4}{\ln 3}
$$

(Def of fractal:

$$
\left.d_{t}<D<d_{e}\right)
$$

How to measure D for a random fractal?

There is always a lower and an upper cutoff (e.g., particle size, radius of gyration).

1. Box counting: Use the definition of D. Cover the object with a mesh of mesh size ℓ, count the boxes where there is occupation. Plot log-log the dependence of $N_{\ell} v s \ell$.
$\log N_{\hat{\ell}}$

$\log \ell$
2. Sand box method

$$
M \sim L^{D}
$$

3. Correlation functions

$$
\begin{aligned}
& C(r)=<\rho(r) \rho(0)>\sim r^{-\alpha} \\
& \int C\left(r^{\prime}\right) d^{d} r^{\prime} \sim r^{r-\alpha} \sim M(r) \\
& D=d-\alpha
\end{aligned}
$$

