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Simple model: Diffusion limited aggregation (DLA) 
Start with a seed particle forming the initial aggregate. 
* Another particle comes from infinity via a random walk until 
it sticks to the aggregate. 
Goto * 100 million particles 

Coarsened 

Self-similar structure 

1 million particles http://apricot.polyu.edu.hk/dla/dla.html 



Lattice effects 
Laplacian aggregates have two categories: 

Tip splitting 

Stable tips 
Stabilized by anisotropy 



DLA on a lattice is anisotropic but splitting tips are observed! 
Randomness suppresses the stabilizing effect. 

No much difference between lattice and  
off lattice DLA (a) 

What if we suppress randomness? 
„Noise reduction”: The growth happens 
only after the m-th particle arrives at the 
growth site. Ordinary DLA: m=1 

m = 2 m = 20 



106 particles 

on-lattice 

off-lattice 

10 clusters of 105 particles 



Dielectric breakdown model 

We start from a grounded center in 2 (or 3d) sorrounded by a far 
circle (sphere) held on potential = 1. We solve the Laplace eq. 
The neighboring sites to the grounded aggregate are growth 
sites. The growth probability is   

η  is a conintuous parameter, 
which has severe influence 
on the shape of the 
aggregates. 
η  = 1 corresponds to the DLA 
case. In fact the patterns are 
very similar and the fractal 
dimension too. 



C. Amitrano: PRA 39 
6618 (1989) 
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Dielectric breakdown model 

What is then the 
role of 
randomness? 



The Eden model 
If η = 0 the growth probability becomes independent of the 
Laplacian field (no need to solve the eq.).  
Eden model: Starting from a seed (initial aggregate) the 
perimeter sites are considered as growth sites. One of them is 
picked at random and added to the aggregate. There are new 
born growth sites. 

No fractal 

Interesting surface 



Ballistic deposition 



These models lead to objects where D = dembedding  
Interesting: The structure of the surface. 
„Surface growth models”  
It is more convenient to study them in the „substrate geometry”. 
The growth starts from a plane d-dimensional substrate and 
proceeds in the remaining, d+1-st dimension (thus it is called d+1 
dimensional growth). 
We assume that the surface can be described by a single valued 
function h(x). This could be identified, e.g., with the maximum 
distance of the surface above positionx of the substrate. In these 
terms the ballistic deposition model reads as:  

€ 

h(x,t +1) =max(h(x,t) +1,h(x + nn,t))



These models lead to non-fractal clusters with constant 
density. The surface shows interesting scaling behavior. 

In the substrate geometry we define a univalued function h(x), 
which is the position of the surface above the d-dimensional 
coordinate x of the substrate. This is not uniquely defined, but 
the this does not matter as we are interested in scaling.  

We define the surface width w: 

For short times we have: 

For long times w is independent of t 
z 



The exponents can – in principle – be determined by „data 
collapse” 

These power laws are summarized in a single scaling form: 

w = Lα f(t/Lz) 

z 

z=α/β 



The Eden model algorithm (square lattice, substrate 
geometry) 
There are 3 kinds of sites: Empty (far from the aggregate), 
already occupied and growth sites (empty ones with at least 
on occupied neighbor). In the array IS we store the 
information about the status of the sites. Empty: -1, 
occupied: 1, growth site: 0. We also store the coordinates of 
the growth sites in a separate array IGR, which has IP  
useful elements, where IP = # growth sites.     

empty  (-1) 

growth (0) 
occupied (1) 

First an element, say the I-th, of IGR is picked at random, the IP-
th element is renamed to the I-th and IP is set to IP -1. IS at the 
selected coordinate is occupied, the empty neighbors become 
growth sites and the corresponding coordinates are put at the and 
of the IGR list. IP  is updated accordingly.  



As time goes on a characteristic size of surface fluctuations 
ξ | (t) is buit up over a the substrate region of size ξ||(t), with 
ξ | ~ ξ||

α. In reality, for limited samples sizes, the situation is 
more complicated. Scaling is valid only asymptotically, i.e., 
for L and t  ∞ and the „short time” („long time”) behavior 
is meant as t << tX  (t >> tX ) For short time/size there are 
(serious) corrections to scaling. An important source is  the 
structure of the surface.  

_ 

_ 



The long wavelength fluctations show the scaling, while on short 
scales the local structure (high steps, overhangs, holes) 
becomes also important. This part of the fluctations contribute to 
the intrinsic width, where the name shows that locally this 
quantity would appear as the width of the surface. If we assume 
that these latter fluctuations are independent of the scaling long 
wavelength fluctuations, we arrive at the relationship: 

w2 = wi
2 + ws

2      (*) 

where w  is the total, wi is the intrinsic width and ws is the part, 
which obeys scaling. As we can measure w the existence of the 
intrinsic width leads to corrections in scaling. There are several 
ways to handle this problem: 
- Take into account (*), when evaluating scaling. Since wi is 
expected to become time and size independent soon, we have  

w2(2t) - w2(t) ~t2β for the short time behavior. 



-  Another possibility is to reduce the intrinsic width. This can 
be done in with the trick of noise reduction as introduced for 
DLA. Note that there should be a compromise between the 
gain in scaling and the loss in computing time. 
-  Analize models, which are in the same universality class 
(i.e., have the same exponents) as the Eden model but have 
already very small intrinsic width. Such a model is the so 
called restricted solid-on-solid model (RSOS). In this lattice 
model, the surface is indeed a single valued function h(x), 
where growth happens at randomly selected sites such that 
the restriction that |Δh| ≤ 1, where Δh is the height difference 
between neighboring sites.  
Using these techniques a large universality class could be 
identified (ballistic deposition, Eden, RSOS) where the 
exponents fulfill the scaling law: α + z = 2.  
The theory of this so called self-affine growth is due to Kardar 
Parisi and Zhang (KPZ-equation). 


