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Monte Carlo (MC) for thermal systems: Importance sampling

How to calculate R(p,L) for percolation?
Generate samples with occupation probability p, measure if

they percolate, take the ratio of percolating / all samples.

A stupid way to do it would be: 

Occupy n < Ld sites at random. Assign to it the probability
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where means the number of percolating configurations out 

of       generated configurations with n occupied sites. 

However, in for large L the binomial distribution is very sharp, 
meaning that except of the neighborhood of the

contribution is VERY small. 
Fortunately, it is easy to generate configurations with the

above probability (the usual way) – then simple average leads
to
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In physics a system is defined by its Hamiltonian. E.g.,
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Frequently asked question: Thermal average of a dynamic

quantity wherepq
ddeq ddpqPpqAA ∫= ),(),(

If A depends only on the energy: ∫= dEEPEEAA eq )()()( ω
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pqeq /),( ),(Hβ−=

In normal systems ω is a rapidly increasing function �

is a very sharply peaked function. 

Importance sampling is needed
)()( EPE
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Generate configurations with the equilibrium
probability. If this task is solved, the thermal averages are
simple averages:
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Problem: How to generate the configurations with the
appropriate probability?

Solution: Metropolis (Metropoli-Rosenbluth-Rosenbluth-

Teller-Teller=MR2T2) algorithm. 

We generate a sequence of configurations using a Markov

chain, i.e., a configuration is generated from the previous
one with a given transition probability. The corresponding

master equation is (Q is a general state variable): 
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)'( QQW →How to choose in order to have
Physics gives the answer: detailed balance! 
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If the transition probability per unit time fulfills detailed balance 
the asymptotic distribution is the equilibrium one. 

Note that detailed balance fixes only the ratio of W-s:

leaving much freedom in the particular choice of W.
Two frequently used forms are:
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Clearly Peq is a solution if W fulfills detailed balance.

Is it stable? Do P(Q,t)-s converge to it?

Let us take a large number of independent MC runs for the

same problem. We consider two states: Q and Q’. We denote
the number of runs in state Q by N, those in state Q’ by N’.
Without loss of generality we assume 0>∆E
The number of these runs will change due to the transitions
between the considered states (we take Metropolis transition

probabilities):
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This is a typical negative feedback: If the ration corresponds to

the canonical weights, nothing happens, otherwise the
correction is in the proper direction.



It is not enough to require detailed balance!
Ergodicity
The Markov chain should be able to visit all possible states (as

we assume for the physical system ergodicity).
Having the space of configurations, MC starts with a proper

definition of elementary MC steps, which enable an ergodic
walk in that space. Fix the temperature. Then – after defining

the BC and the initial conditions – a MC simulation consists of 

the following steps. 

i) Choose elementary step Q � Q’

ii) Calculate ∆E
iii) Calculate W(Q�Q’)
iv) Generate a random number

v) If the new state is Q’, otherwise it remains Q

vi) Count time increment
vii) Do the necessary measurements (! Relaxation time)

viii) go to i) until max # of steps
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The sequence of configurations generated by this MC method 
does not reflect the real time evolution of the system, however,

it can be considered as a „MC time”. This time is measured in

„Monte-Carlo steps per site” in order to enable the comparison
of the „time”-dependence of systems with different sizes. In

some cases this „time” has to do with real time, e.g., in diffusive
processes.

As „time” is defined by the sequence of configurations

generated from each other the reasoning about characteristic

times between measurements applies.



Two examples:
i) Simple atomic liquid

The Hamiltonian is the sum of the kinetic and the potential
energy. The velocity distribution in a classical system is given

by the Maxwell distribution – it is enough to deal with the
potential energy. A possible form is the so-called Lennard-

Jones pair potential:

with two parameters.

Elementary step: Pick a particle and move it to a new position.

This is clearly ergodic. It is more efficient if we give larger
weights to short jumps.

What shall we look for? No dynamics! But
a) Pressure virial theorem
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b) Pair correlation function g(r)

E(N = # atoms in the ring of width dr and radius r around the 0|

E

atom at 0) = , which describes short r. orderdrrngr )(4 2π

http://stp.clarku.edu/simulations/lj/mc/index.html

The static structure factor of scattering experiments is related to it:
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ii) Ising model

Ergodic elementary step: Pick a spin at random and flip it.
Calculate the energy before (Ei) and after (Ef) the flip.
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Note that due to the local interaction there are only few possible

values of ∆∆∆∆E depending on the number of (anti) parallel 
neighboring sping and the existence of the external field. 

Let us take the square n.n. lattice and h = 0. 

111ln[w(Q�Q’)]

-8-4048∆∆∆∆E/J

43210# of 

spins

If h ≠≠≠≠ 0, we have 10 
different values instead of 
5, because the direction

of the spin relative to h
has to be consideredβ8− β4−



Thus we can store the possible values of the transition

probabilities in an array of 2 variables w(i,j), where i -1 is the
number of antiparallel spins around the one to be flipped and 

, where s is the value of that spin (h ≥≥≥≥ 0)

h
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To be measured:
a) Magnetization (updated when flipping by )

b) Energy (updated when flipping by ∆E)
2±

I = 2, j =2



Monte Carlo technique is generally used in statistical physics,

field theory and material science.

E.g., the study of two component alloys can be mapped onto

an Ising model. We start from the energy of the lattice gas
model:

Here ni is 0 or 1 (occupation), µµµµ is the chemical potential and εεεε
the interaction energy. The partition function is

Which is equivalent to an Ising partition function with J=εεεε/4 

and h corresponds to µµµµ (plus a constant). In an alloy, n = 1 
means A, n = 0 means B atoms.



Special techniques for the Ising model

At the critical point not only the correlation length diverges

but the relaxation time too.

Qualitative explanation: Since spin flips are random, the

time ττττ needed to eliminate/create a regime of size ξξξξ is 
(random walk argument). In fact, 2 is the mean field

exponent, in reality it can be different: z. (z is usually close

to 2.)

In a finite size sample the CPU time needed to equilibrate
the system is therefore: 

Efficient algorithms are needed!
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Poor men’s parallel comuting: Multi spin coding.



The information about a spin is binary, we can assign 1 to up 
and 0 to down spins. In principle, we could put 32 spins into a 

single 32-bit word. While this would save a lot of memory, the 

handling of the single spins becomes tedious.
We want to handle all the spins in a word simultaneously. 

Then (taking the square lattice as an example) the following 
problem arises:
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The spins have to be put into the words such that the X-s 

represent neighbors in the lattice. Then simple XOR indicates 

the antiparallel spin pairs in a pair of words. 



Another problem is that we need the sum of antiparallel

neighbors, which can be up to 4. I.e., 3 bits are needed to 
store the information about the energy of a spin.

These two problems can be solved simultaneously. 
We put a spin only into every 3-d bit. The words are filled up 

in a special way ensuring the proper neighborhods. 

1 2 3 4 5 6 L

L+1

1 2 3… … … … N

N = L/10 words/row used in

N+1 N+2 N+2

IS(i,j), i = 1,…L/10; j = 1,…L



We define an array IER(i,j) for storing the number of antiarallel

spins for the 10 spins in IS(i,j).

IER(i,j)=XOR(IS(i,j),IS(i-1,j)+XOR(IS(i,j),IS(i+1,j))+

XOR(IS(i,j),IS(i,j-1))+XOR(IS(i,j),IS(i,j+1))

Now we have for an index pair i,j the words IS and IER

1 …0IS(i,j)

1 …01 1 00IER(i,j)

So far we could handle 10 spins in parallel. The MC decision 

has to be made individually: Shift both the spin under 
consideration and the corresponding IER value to the right end 

of the words, mask out the IER value, calculate the transition 
probability and flip the spin with a negation if necessary. 

Special care needed at the end of the words and at BC-s!



The sequence of updates is deterministic, but this does not
influence the equilibrium properties. Moreover, the value of the

exponent z remains unaltered, thus we can only influence the
prefactor in the relationship (The gain is about a 

factor of 3-4.)

How to influence the exponent z? Physics helps.

Large z due to local („diffusive”) dynamics.
What if we flipped groups of spins together?

Cluster algorithms
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