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Abstract

The topological coordinate method is a simple and effective approach for generating good initial coordinates for fullerene and

nanotube carbon structures in molecular mechanics calculations. In this method some special eigenfunctions, the bi-lobal eigen-

functions of the H€uckel Hamiltonian, or the adjacency matrix are used. It is based on a special connection between the electronic

and geometric structure of fullerenes and nanotubes. We have found that the most efficient nanotube initial coordinates can be

obtained with the four bi-lobal eigenvector method. The three bi-lobal eigenvector method gave relative good initial coordinates

only if the two ends of the tube were closed. In both cases the scaling factors based on the Schr€odinger equation of a particle in a

rectangular box gave the best result.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The electronic structure of a polyhex single-walled

carbon nanotube is governed by the diameter and chi-

rality [1–5]. If the tube contains pentagonal and hep-

tagonal faces too, its physical behavior depends on the

topological properties as well [6–27], and the final geo-

metrical structure can be determined only by some
molecular mechanics calculation. For the relaxation

process we need some good initial coordinates and

various methods can be used in generating the input

positions of the carbon atoms. One of them is the

NiceGraph algorithm [20] and the other is the topo-

logical coordinate method [21,23]. In the NiceGraph

algorithm a spring-embedder routine is used for opti-

mizing the 3D drawing, and the topological coordinate
method is based on the bi-lobal eigenvectors of the

adjacency matrix of the graph.

Here we shall study the application of the topological

coordinate method for nanotubes. In Ref. [25] we pre-

sented a version where the nanotube coordinates are

obtained from those of the corresponding torus. Why do

not we use algorithm developed for the fullerenes? What
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are the influences of various scaling factors? These

questions will be examined in this paper.
2. The topological coordinate method

Let A be the adjacency matrix with elements Aij ¼ 1,

if atoms i and j are adjacent and Aij ¼ 0 otherwise.

From this definition follows that H ¼ �A, where H is

the H€uckel Hamiltonian matrix with a ¼ 0 and b ¼ �1,
where a is the diagonal matrix element and b is the non-

zero non-diagonal matrix element of H. It is assumed

further that

a1 > a2 P a3 P � � � P an; ð1Þ

if ak is the kth eigenvalue of A and ck is the corre-

sponding eigenvector.

First we define the bi-lobal eigenvectors [21,22].

Vectors having this bi-lobal property can be identified

by the graph-disconnection test: for a candidate vector,

color all vertices bearing positive coefficients black, all
bearing negative coefficients white, and all bearing a

zero coefficient gray; now delete all gray vertices, all

edges incident on gray vertices, and all edges connecting

a black to a white vertex; if the graph now consists of

exactly two connected components, one of black and

one of white vertices, then the eigenvector is bi-lobal

type [21,22,24].
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If ck1 , ck2 and ck3 are the first tree bi-lobal eigenvectors

of A, then the xi, yi and zi topological coordinates of the
carbon atoms in a spherical carbon structure (fullerene)

are:

xi ¼ S1c
k1
i ; ð2Þ

yi ¼ S2c
k2
i ð3Þ

and

zi ¼ S3c
k3
i ; ð4Þ

where Sa ¼ 1 or Sa ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � akaÞ

p
or any other

appropriate scaling factor.

The topological coordinates of the torus are calcu-

lated from four bi-lobal eigenvectors ck1 , ck2 , ck3 and ck4 ,
as

xi ¼ S1C
k1
i ð1þ S4C

k4
i Þ; ð5Þ

yi ¼ S2C
k2
i ð1þ S4C

k4
i Þ; ð6Þ

zi ¼ S3C
k3
i ; ð7Þ

where S1, S2, S3 and S4 are scaling factors as before. In

the construction of this formula we supposed that the

position of an atom i on the toroidal surface is the sum

of vectors Ri and ri. The vector Ri points from the center

of gravity of the torus to a point on the circular spine,

and vector ri points from there to the surface point i [24].
The topological coordinates of the nanotube are ob-

tained from the corresponding torus by supposing

periodicity at the ends of the nanotube [25]:

xi ¼ S3C
k3
i ; ð8Þ

yi ¼ S4C
k4
i ; ð9Þ

zi ¼ R arccosðS1Ck1
i =RÞ if Ck2

i P 0 ð10Þ
and

zi ¼ Rð2p� arccosðS1Ck1
i =RÞÞ if ck2i < 0: ð11Þ

Here the radius R is the average value of Ri with the

scaling of Ref. [25].
Fig. 1. Topological coordinates obtained by Eqs. (8)–(11) with

Sa ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � aka Þ

p
, k1 ¼ 2, k2 ¼ 3, k3 ¼ 12 and k4 ¼ 13 for the nano-

tube (3,2, )12,30). Both ends are open.
3. Applications for nanotubes

The two-dimensional periodic lattice structure can be

generated by the translations, t ¼ n1a1 þ n2a2, where n1
and n2 are integers and a1 and a2 are unit vectors of the

direct lattice. The unit vectors of the super cell are

e1 ¼ m11a1 þ m12a2 and e2 ¼ m21a1 þ m22a2 with integers

m11, m12, m21, m22. For the construction of the topolog-
ical coordinates of a two-dimensional periodic system

we need the number of atoms in the unit cell (0,0) and

the neighbors each of them. Using then the integers m11,

m12, m21, m22 the matrix A of the corresponding torus

can be constructed by identifying the opposite edges of

the super cell, and finally the topological coordinates are

calculated by the Eqs. (8)–(11). Here we suppose that the
tube axis is parallel with the super cell unit vector e2 and

each nanotube can be characterized by the vector

ðm11;m12;m21;m22Þ. Thus the topological coordinates can
be obtained without knowing the unit vectors a1, and a2
and without knowing the coordinates of the atoms in the

unit cell.

In Figs. 1–6 we have presented the topological coor-

dinates of the nanotube (3,2,)12,30) using various

methods and Sa scaling factors. The best initial guess for

nanotube geometry was obtained by Eqs. (8)–(11) and

Sa ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � akaÞ

p
with k1 ¼ 2, k2 ¼ 3, k3 ¼ 12 and

k4 ¼ 13 in Fig. 1. In each cases of Figs. 1–6 the scaling
factors Sa ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � akaÞ

p
were better than those of

Sa ¼ 1.



Fig. 2. Topological coordinates obtained by Eqs. (8)–(11) with Sa ¼ 1,

k1 ¼ 2, k2 ¼ 3, k3 ¼ 12 and k4 ¼ 13 for the nanotube (3,2, )12,30).
Both ends are open.

Fig. 4. Topological coordinates obtained by Eqs. (2)–(4) with Sa ¼ 1,

k1 ¼ 2, k2 ¼ 11 and k3 ¼ 12 for the nanotube (3, 2, )12, 30). Both ends

are open.

Fig. 6. Topological coordinates obtained by Eqs. (2)–(4) with Sa ¼ 1,

k1 ¼ 2, k2 ¼ 12 and k3 ¼ 13 for the nanotube (3, 2, )12,30). Both ends

are closed.
Fig. 3. Topological coordinates obtained by Eqs. (2)–(4) with

Sa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � aka Þ

p
, k1 ¼ 2, k2 ¼ 11 and k3 ¼ 12 for the nanotube (3, 2,

)12,30). Both ends are open.

Fig. 5. Topological coordinates obtained by Eqs. (2)–(4) with

Sa ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � aka Þ

p
k1 ¼ 2, k2 ¼ 12 and k3 ¼ 13 for the nanotube (3, 2,

)12, 30). Both ends are closed.
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These results can be explained by the fact that the

scaling factors Sa ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � akaÞ

p
are based on the

solutions of the Schr€odinger equation for a particle in a

rectangular box [21]. That is
wnx;ny ;nz ¼ sin
nxp
Lx

x
� �

sin
nyp
Ly

y
� �

sin
nzp
Lz

z
� �

ð12Þ

and

Enx;ny ;nz ¼
�h2p2

2m
n2x
L2
x

 
þ

n2y
L2
y

þ n2z
L2
z

!
; ð13Þ

are the solutions, where Lx, Ly , Lz are the sides of the box

and nx, ny , nz are integers. Thus:

a1 ¼ E1;1;1 ¼
�h2p2

2m
12

L2
x

 
þ 12

L2
y

þ 12

L2
z

!
; ð14Þ

ax ¼ E2;1;1 ¼
�h2p2

2m
22

L2
x

 
þ 12

L2
y

þ 12

L2
z

!
; ð15Þ

ay ¼ E1;2;1 ¼
�h2p2

2m
12

L2
x

 
þ 22

L2
y

þ 12

L2
z

!
ð16Þ

and

az ¼ E1;1;2 ¼
�h2p2

2m
12

L2
x

 
þ 12

L2
y

þ 22

L2
z

!
; ð17Þ

give the scaling Sa ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � akaÞ

p
.
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Figs. 3 and 4 show that the topological coordinates

obtained by Eqs. (2)–(4) can not be used directly for a

tube, as the eigenvectors k1 ¼ 2, k2 ¼ 11, k3 ¼ 12

‘‘remember’’ to the eigenvectors k1 ¼ 2, k3 ¼ 12, k4 ¼ 13
of the corresponding torus. This is why the two ends of

the tube turn back using Eqs. (2)–(4). At the ends of the

tube there are ten two-connected atoms and in the

Theorem of Lov�asz and Schrijver [28] the condition that

the graph be three-connected is essential for a proper

embedding on a sphere. For the connection between the

topological coordinate methods and the null space

embedding of graphs see for example [25]. We did not
obtain the turning back after eliminating the two-con-

nected atoms with addition of two pentagons at the two

ends of the tube. See Figs. 5 and 6.
4. Conclusions

With the help of the bi-lobal eigenvectors of the A
adjacency matrix good initial Descartes coordinates can

be generated for fullerenes and nanotubes. In appro-

priate energy units the A is the negative H€uckel Ham-

iltonian ðA ¼ �HÞ and one can say, that in this method

some electronic eigenfunctions are used in the con-

struction of the atomic positions. Here we examined the

three and four bi-lobal methods, and it was found that

the best coordinates were obtained using four bi-lobal
eigenvectors and scaling coefficients based on the solu-

tions of the Schr€odinger equation for a particle in a

rectangular box. The three bi-lobal eigenvector method

gave relative good initial coordinates only if the two

ends of the nanotube were closed.
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[19] Diudea MV, Pârv B, Kirby EC. Azulenic tori. MATCH-Commun

Math Comput Chem 2003;47:53–70.

[20] Pisanski T. Vega quick reference manual and vega graph gallery.

Ljubljana, 1995 (Also at http://vega.ijp.si).

[21] Manolopoulos DE, Fowler PW. Molecular graphs, point groups,

and fullerenes. J Chem Phys 1992;96:7603–14.

[22] Fowler PW, Manolopoulos DE. In: An Atlas of Fullerenes.

Clarendon Press; 1995. p. 101–4. Chapter 5.

[23] Graovac A, Plav�si�c D, Kaufman M, Pisanski T, Kirby EC.

Application of the adjacency matrix eigenvectors method to

geometry determination of toroidal carbon molecules. J Chem

Phys 2000;113:1925–31.

[24] L�aszl�o I, Rassat A, Fowler PW, Graovac A. Topological

coordinates for toroidal structures. Chem Phys Lett

2001;342:369–74.

[25] L�aszl�o I, Rassat A. The geometric structure of deformed

nanotubes and the topological coordinates. J Chem Inf Comput

Sci 2003;43:519–24.

[26] Kirby EC. On toroidal azulenoids and other shapes of fullerene

cage. Fullerene Sci Technol 1994;2:395–404.

[27] Deza M, Fowler PW, Shtogrin M, Vietze K. Pentaheptite

modifications of the graphite sheet. J Chem Inf Comput Sci

2000;40:1325–32.

[28] Lov�asz L, Schrijver A. On the null space of a colin de verdi�ere
matrix. Ann I Fourier (Grenoble) 1999;49:1017–26.

http://vega.ijp.si

	Topological coordinates for nanotubes
	Introduction
	The topological coordinate method
	Applications for nanotubes
	Conclusions
	Acknowledgements
	References


