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Based on Euler´s theorem a topological description will be given for the junctions of carbon
nanotubes. Then using the intersection of cylinders an algorithm will be presented for con-
structing junctions between single wall nanotubes of any chirality and diameter.
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INTRODUCTION

Carbon nanotubes1 are possible candidates for building
blocks in nanoscale electronic devices. They can form
also very small junctions for electronic circuits in this
region. The first theoretical propositions for nanotube junc-
tions2,3 were published shortly after Iijima’s discovery,
which were followed by others.4–16 In Ref. 8 an algebra
was given for describing nanotube junctions. There are
also several experimental finding on multi wall17 and
single wall Y junctions18 or other junctions obtained by
various methods.19,20 See a recent review in Ref. 21.

In this paper first we describe the nanotube junc-
tions using the method of Ref. 8 and then an algorithm
will be presented and applied for several cases of single
wall nanotubes with any chirality and diameter. The fi-
nal junctions will be described with the help of Schlegel
diagrams.

EULER'S THEOREM AND CONSEQUENCES
FOR NANOTUBE JUNCTIONS

According to Euler's theorem, for any polyhedron homeo-
morphic to the sphere S2 it is stated that the numbers of
vertices V, edges E and faces F have the relation

F – E + V = 2 . (1)

In topology, if S is an orientable closed surface, its genus
g is the number of handles and its Euler characteristic
equals to F – E + V. The genus is 0 for the sphere and it
is 1 for the torus. The Poincaré formula

F – E + V = 2(1 – g) (2)

is the generalization of Euler's polyhedron theorem for
polyhedrons of higher genus.
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If ni is the number of faces with i vertices, and each
vertex has 3 neighbors

E =
1

2
ini

i

� , V =
2

3

1

3

E
ini

i

� � , F = ni

i

� (3)

and thus the Poincaré formula has the following form

( )6 �� i ni

i

= 12(1 – g) (4)

From this relation follows that the coefficient for n6

is zero, that is there is no constraint for the number of
hexagons. For fullerenes g = 0, thus Eq. (4) gives that
n5 = 12 if other polygons different of hexagons are not
allowed. If we allow heptagons too, from Eq. (4) follows
that n5 – n7 = 12. In Figure 1 we can see the schematic
representation of three structures of g = 0. They are in
order the fullerene (Figure 1a) the nanotube of two closed
ends (Figure 1b) and a nanotube junction or a nanotube
of three closed ends (Figure 1c). For a fullerene we can
suppose that the number of pentagons is 12. The same is
valid for a nanotube of two closed ends (Figure 1b) but
here we can suppose that the pentagons are at the half
spheres. That is there are 6 pentagons at each ends. If we
suppose further 6 pentagons at each ends of the structure
in Figure 1c, the number of pentagons will be n5 = 18.
From the relation n5 – n7 = 12 follows that n7 = 6. Thus a
nanotube junction must have 6 heptagons if other poly-
gons different of hexagons are not allowed. In Figure 2a
we can see the schematic representation of a hexagonal
nanotube and in Figure 2b the junction of hexagonal na-
notubes must have 6 heptagons. Thus a nanotube junc-
tion between polyhex nanotubes must have at least 6
heptagons if other polygons are not allowed. The same
result was found in Refs. 8 and 14. Using a reasoning as
before we can obtain the following relation for a con-
nected nanotube network with e open ends.

( ) ( )6 12 1 6� � � �� i n g ei

i

(5)

Here g is the genus of the corresponding nanotube
network with closed ends. The interior carbon atoms are
three-connected and the polygons obtained by opening
the ends are not counted in the summation. Let us turn
back to the nanotube junction of three ends (e = 3) and
g = 0. In this case Eq. (5) can be written as:

3n3 + 2n4 + n5 – n7 – 2n8 – 3n9 – 4n10 –
5n11 – 6n12 – 7n13 – ... = –6 (6)

Triangles, squares or pentagons alone can not fulfill
the condition of a nanotube junction. If we want to use
only one type of polygons we need 6 heptagons, 3 octa-
gons, 2 nonagons or 1 dodecagon. There are other possi-
bilities using several polygons.

NANOTUBE JUNCTION AS INTERSECTION
OF CYLINDERS

Usually the single wall nanotube is a hexagonal network
of carbon atoms that has been rolled up to make a cylin-
der. The unit vectors of this graphene sheet are a1 =
a( 3/2, 1/2) and a2 = a( 3/2, –1/2). The unit cell con-
tains two atoms at positions (0,0) and (a/ 3,0). A paral-
lelogram can be constructed from the super cell vectors
b1 = m a1 + n a2 and b2 = p a1 + q a2 where m, n, p and q

are integers. Usually the chiral vector b1 determines the
type of the nanotube and the length is given by the trans-
lation vector b2. In our case the super cell will be rectan-
gular. That is p = – k(m + 2n) and q = k(2m + n) with the
positive integer k. After rolling up this super cell a nano-
tube is obtained with a radius of

r =
a m mn n3 3 3

2

2 2� �
�

. (7)

We want to find the junction between the nanotubes
(m1, n1) and (m2, n2). As the nanotube can be thought of
as a cylinder having the hexagonal network on its sur-
face, the junction will be determined with the help cylin-
ders’ intersection. In our notation the line of intersection
on the first cylinder is intersection 1 and on the second
cylinder is intersection 2. The (u, v) Descartes coordina-
tes with horizontal and vertical axes b1 and b2 for inter-
section 1 on the rectangle of the first cylinder are:

u = r1�1 (8)
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with

218 I. LÁSZLÓ

Croat. Chem. Acta 78 (2) 217–221 (2005)

Figure 1. Schematic representation of three structures of g = 0. (a)
The fullerene; (b) The nanotube of two closed ends; (c) Nanotube
junction or a nanotube of three closed ends.

Figure 2. Schematic representation of (a) nanotube and (b) nano-
tube junction of open ends.
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where (r1, �1) and (r2, �2) are the cylindrical coordinates
of cylinders 1 and 2. The angle and distance between the
axis of the two cylinders are in order a and d. The value
d  0 correspond to the case where the cylinder axes are
not intersecting. It is supposed further that

r2 � r1, d � �(r1 – r2)� (12)

and
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The same notation is used for the (u, �) coordinates of
intersection 2 on the second cylinder rectangle. That is

u = r2 �2 (14)
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where –� � �2 � +�.

EXAMPLES

Here we shall construct junctions between the nanotubes
(m1, n1) = (18, 2) and (m2, n2) = (10, 5). Equation (1)
gives the corresponding radii r1 = 7.36 Å and r2 = 5.11
Å using the a = 1.421 Å carbon-carbon distance in the
graphene sheet. In our first example the angle and dis-
tance between the nanotube (cylinder) axes are in order
� = 70° and d = 2.0 Å. In Figure 3 can be seen the line
of intersection made by the cylinder of the second nano-
tube on the super cell of the first one and Figure 4 shows
the line of intersection on the other rectangle. Each lines
cut several carbon-carbon bonds. The vertical and hori-
zontal translations of the intersection lines correspond to
axial rotations or translations of the cylinders. With the
help of these transformations the number of cut bonds

are changing and our purpose is looking for such posi-
tions where their number is the same on each cylinders.
After cutting out the interior part of the first intersection
and the lower part of the second one the two nanotubes
can be joined together by the corresponding half bonds.
The positions and order of these bonds can be described
by the angles �2 and the nanotubes will have little dis-
tortions if the two joined atoms of the new bonds have
nearly the same �2.

This algorithm provides a nanotube junction where
each carbon atoms have three neighbors.

In most of the cases, however, the number of non
hexagonal polygons is not the ideal. We made system-
atic searches in order to find the ideal case of six hepta-
gons (that is n7 = 6). For the parameters of � = 70° and
d = 2.0 Å we could not find a junction of six heptagons.
The junction we have found contains seven heptagons
and one pentagon (n7 = 7 and n5 = 1) Figure 5. Although
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Figure 3. The line section of the (10, 5) nanotube cylinder on the
super cell rectangle of the (18, 2) nanotube.

Figure 4. The line section of the (18, 2) nanotube cylinder on the
super cell rectangle of the (10, 5) nanotube.

Figure 5. The Schlegel diagram of a junction between nanotubes
(m1, n1) = (18, 2) and (m2, n2) = (10, 5) with the parameters �

= 70°, d = 2.0 Å, n5 = 1 and n7 = 7.



decreasing � we could not found any junction with low
number of non hexagonal polygons, the parameters � =
90° and d = 2.0 Å provided the junction of Figure 6. It
has one pentagon, five heptagons and one octagon (n5 =
1, n7 = 5 and n8 = 1). In Figure 7 we can see a junction
of one pentagon three heptagons and two octagons (n5 =
1, n7 = 3 and n8 = 2) with the parameters � = 60° and d =
0.0 Å. An ideal case of n7 = 6 was found for � = 90° and
d = 0.0 Å (see Figure 8.).

In each cases the final structure was constructed with
the help of a molecular mechanics method based on the
Brenner potential.22

CONCLUSIONS

We have shown that using only geometrical reasoning
realistic nanotube junctions can be constructed. It was
found that by changing the positions and angles between
nanotube axes, several junctions can be generated be-
tween any kind of single wall carbon nanotubes. As the
electronic properties depend on the junctions, a system-
atic search by parameter variations could reach to spe-
cial nanotube networks with new useful properties. The
method of cylinder intersection can be generalized for
intersection of other surfaces too, thus the it can be gen-
eralized for constructing junction between any kind of
carbon surfaces.
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Figure 7. The Schlegel diagram of a junction between nanotubes
(m1, n1) = (18, 2) and (m2, n2) = (10, 5) with the parameters �

= 60°, d = 0.0 Å, n5 = 1, n7 = 3 and n8 = 2.

Figure 8. The Schlegel diagram of a junction between nanotubes
(m1, n1) = (18, 2) and (m2, n2) = (10, 5) with the parameters �

= 90°, d = 0.0 Å, and n7 = 6.

Figure 6. The Schlegel diagram of a junction between nanotubes
(m1, n1) = (18, 2) and (m2, n2) = (10, 5) with the parameters
� = 90°, d = 2.0 Å, n5 = 1, n7 = 5 and n8 = 1.
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Topologijski opis i konstrukcija spajanja ugljikovih nanocijevi s jednom stjenkom

István László

Dan je topologijski opis, temeljen na Eurelovu teoremu, spoji{ta ugljikovih nanocijevi. Zatim je prikazan,
uporabom sjeci{ta cilindara, algoritam za konstrukciju spoji{ta izme|u ugljikovih nanocijevi s jednom stjen-
kom i bilo kojom kiralno{}u i bilo kakvim dijametrom.

SINGLE WALL CARBON NANOTUBE JUNCTIONS 221

Croat. Chem. Acta 78 (2) 217–221 (2005)


