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Abstract

Physically realistic 3D geometries for toroidal trivalent networks can be produced from graph theoretical infor-
mation alone, using the eigenvectors resulting from diagonalisation of the vertex adjacency matrix. Arguments from the
problem of a quantum particle constrained to move on a surface show that three vectors suffice for zero-genus spherical
cages, whereas four are needed for decorations of surfaces with genus 1 (in contrast to previous suggestions). Solutions
for the problems arising from the systematic high degeneracies in the spectra of polyhex tori are proposed. © 2001

Elsevier Science B.V. All rights reserved.

1. Introduction

For many purposes it is useful to be able to
assign a set of physical cartesian coordinates to a
structure that is defined only by its graph, i.e. by
the adjacencies of its vertices. Coordinate reali-
sations allow, for example, drawing, optimisation,
energy calculation and symmetry assignment for
chemical structures. A simple solution to the
problem for spherical polyhedra (whose graphs
are three-connected and planar) was proposed in
earlier work [1,2]. It relies on the correspondence
between eigenvectors of the adjacency matrices of
such graphs and spherical harmonic functions.
Here we consider the extension of the method
from S?, the sphere, to T2, the torus. Toroidal
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molecules are of topical interest in carbon
chemistry and physics [3—-10] and may be expected
to exhibit novel magnetic properties [9,11,12].
Some difficulties in obtaining good drawings of
toroidal polyhexes and related molecules have
been noted in the literature [14], but these can be
solved by the extension made in the present
Letter of the harmonic approach to ‘topological
coordinates’.

2. Background

We follow [1,2]. Let A be the adjacency matrix
of the n-vertex graph, with elements 4;; = 1 if atom
(vertex) i is bonded (joined by an edge) to atom
(vertex) j, and 4;; = 0 otherwise. Let C* be the kth
eigenvector of A, and a; the corresponding eigen-
value, with all C* chosen to form an orthogonal
set. Then,
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Assume that the eigenvalues are labelled in de-
scending order,

G >aza= - >a,. (3)

C' is then the totally symmetric, non-degenerate
vector, which has every coefficient C} of the same
sign (and equal to 1/4/n, if the graph is regular, as
for the trivalent fullerenes).

When the graph can be embedded in $2, C'
corresponds to the spherically symmetric S har-
monic (angular momentum L = 0). The basis of
the ‘topological coordinate’ method is then to
identify three further vectors C4, Cb, C* that
correspond to the next spherical harmonic set i.e.,
to three real components P, (« = x,y,z) with an-
gular momentum L = 1. As the value of P, at a
point rj = (x;,;,z;) on the sphere is, apart from
normalisation, just equal to «;, the entries in these
vectors can be read directly as coordinates or can
be scaled to give a polyhedron of suitable overall
size or average edge length.

The essential feature of a harmonic P, is that it
consists of two lobes of opposite sign, separated by
a single nodal plane. Vectors having this bi-lobal
property can be identified by the graph-discon-
nection test: for a candidate vector, colour all
vertices bearing positive coefficients black, all
bearing negative coefficients white, and all bearing
a zero coeflicient grey; now delete all grey vertices,
all edges incident on grey vertices, and all edges
connecting a black to a white vertex; if the graph
now consists of exactly two connected components,
one of black and one of white vertices, then the
eigenvector is of P type. This is a more formal
statement of the procedure already used in [1,2]
and is applicable provided the original graph
covers the sphere sufficiently densely i.e., provided
that n is sufficently large, so that at least for the
lower harmonics, there will be at most one nodal
surface passing through any given edge (see Fig. 15
of [14] for what can happen in a counter example).

3. Application to tori

On the torus there are not three but four mu-
tually orthogonal bi-lobal harmonic functions
(P, P,,P, and P,) which span representations II,,
X+ and Zg, respectively, of the parent point group
(Don) appropriate to an undecorated torus with
rotational symmetry about z. The four nodal pat-
terns are shown in Fig. 1. Notice that although
their symmetries in D, are different, P, and P, can
be interchanged by an ‘anapolar’ [13] motion
where all points move on circles about the internal
circular spine of the torus; the harmonics P, and P,
are of course exchanged by a rotation about the z
axis.

Given the four eigenvectors Ch, Chb, Ck, C*
corresponding to these functions, the cartesian
coordinates of vertex i can be defined by a vector
construction in which each point on 72 is assigned
a ‘latitude’ by its position on a local circular cross-
section normal to the xy plane, and a ‘longitude’
by the angular position of its projection onto the
xy plane. (The two sets of curves on a ruled solid
torus are sometimes known as ‘meridians’ and
‘longitudes’, where the distinction is that a me-
ridian bounds a disc inside the solid, but a longi-
tude bounds a disc in the exterior space [15].) The
position of the point is the sum of a vector R from
the centre of gravity of the torus to a point on
the circular spine, and a vector r from there to the
surface (see Fig. 2). The size and aspect ratio of the
torus are governed by the two radii R = |[R| and
r = |r| (see Fig. 2).

The topological ansatz for the coordinates of
vertex i is therefore

X, = S.Ch(1+8,Ch),  ¥i=8,C7(1+5,Ch),
Z, = S.Cy, 4)
where S,, S,, S., S, are the scaling factors which

reflect the radii R and r and may be chosen ac-
cording to a recipe such as [1,2]

&:MM@—%) (5)

Notice that the above Eq. (4) uses four eigen-
vectors and not three as a direct analogy with the
spherical case would suggest. The four are neces-
sary to represent the full set of degrees of freedom
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Fig. 1. The four orthogonal, bi-lobal, surface harmonic functions on the torus and their interconversion motions.

of the torus. It can be seen from (4) that if, for
example, the C* vector is neglected, (or S, set to
zero) the torus will be reduced to a flat cylindrical
strip. The inequivalent roles of the four vectors in
(4) arise from our choice of xy as the equatorial
plane. From a topological point of view, the sur-

:G,r
:\

Fig. 2. Definition of angular and radial coordinates for the
torus.

face of the torus can be constructed by identifying
opposite edges of a rectangle, and the order in
which this is done determines which pair of coor-
dinates is xy and which is Rr in the subsequent
three-dimensional embedding. Reversing this or-
der, or making other transformations of coordi-
nates allowed under the invariance of the torus,
can produce physically distinct realisations with
the same nominal connectivity [4]; our choice is
appropriate to chemical graphs, which tend for
steric reasons to be realised as ‘long, thin’ rather
than ‘short, fat’ tori, and it generally gives physi-
cally realistic coordinates in which geometric
proximity and graph-theoretical adjacency are in
agreement.

It appears that at least four vectors can always
be found by explicit application of the disconnec-
tion test to the full set of eigenvectors. However
the surface-harmonic picture gives a strong hint as
to which vectors these will be, especially when
there is high symmetry. In a sufficiently large
graph and in the absence of extra accidental de-
generacy the usual particle-on-a-surface arguments



372 L LaszIo et al. | Chemical Physics Letters 342 (2001) 369-374

suggest (ky,k,) = (2,3), which form a degenerate
pair of eigenvectors for tori of Dy, D,q, Cn, Cpy
(n = 3) symmetry.

4. Results
4.1. Tori with pentagonal and heptagonal faces

From Euler’s theorem it is mathematically
possible to cover the torus entirely with hexagonal
faces to form trivalent carbon frameworks, and
these hypothetical polyhex tori have been inten-
sively studied from the point of view of m-electron
theory [4,9]. It is useful, however, to introduce
non-hexagonal faces to relieve the considerable
steric strain of the pure polyhex [3].

Fig. 3 shows an example of a 5, 6, 7 framework
in which the present method has been used to
construct topological coordinates. The resulting
geometry is a plausible starting point for further
chemical investigations.

In contrast, the structures produced with only
three eigenvectors are seen to be unphysical, in one
case considerably flattened into a cylinder, in the
other less distorted but still so nearly cylindrical
that geometrically close neighbours no longer
correspond to adjacent vertices of the graph. In the
three-vector method a choice must be made be-
tween P, and P. vectors; in the full four-vector
method, both are given appropriate weight, lead-
ing to a properly rounded toroidal structure.
Similar results can be obtained for many other
examples of this class of graphs.

4.2. The polyhex torus

Purely hexagonal toroidal frameworks present
some new features for the method. Polyhex tori can
be considered as constructed from a parallelogram-
shaped patch of hexagons defined by two lattice
vectors a; = a(v/3,1)/2 and a, = a(v/3,-1)/2,
where opposite edges of the parallelogram have
been identified [9]. This construction uses four in-
tegers (n,m,p,q) for the chiral vector C, = na;+
ma, and the twisting vector T = pa; + qa,. (A fur-
ther reduction is possible by appropriate choice of
the unit parallelogram [4].) Fig. 4 shows four typical

()

Fig. 3. A toroidal framework Cy; composed of pentagonal,
hexagonal and heptagonal rings. Drawn from coordinates
based on: (a) four eigenvectors (2,3, 10, 13) using Eq. (4) of the
present work; (b) three eigenvectors (2,3, 10) [14]; (c) three ei-
genvectors (2,3,13) [14].



L. LaszIo et al. | Chemical Physics Letters 342 (2001) 369-374 373

(b)

(c)

Fig. 4. Polyhex toroidal frameworks drawn from their topological coordinates [Eq. (4)]: (a) (n,m,p,q) =(3,2,7,—-8)(k, k. k., k) =
(2,3,4,5); (b) (n,m,p,q)=(3,2,4,—10)(k,ky, k-, k) = (2,3,4,5); (¢) (n,m,p,q)=(3,2,5,=7)(ks,ky k-, k) =(2,3,4,5); (d) (n,m,p,q)=

(57073776)(kxyky7kz7k7‘) = (273*4/5)

polyhex tori, drawn from the topological coordi-
nate expressions (4).

The toroidal polyhex has systematic degenera-
cies. According to [9] the eigenvalues agx > 0 are
the following:

ax = (1 +4cos(K,) cos(K,) + 4cos? (K,)), (6)
with

(lilm —n) + L,(p — q))

R ) (7)
and
K, =K,(I,1,) = (li(m+n)—1L(p+q)) . -

(mp — nq)

With a simple trigonometric transformation we
obtain:

ax = a(l, 1)
= (3 +2(cos(K, — Ky)
+cos(K, + K,) + cos(2K,)) ). (9)

From this equation it follows that a(0,0) = 3 and
a(l;, 1,) =a(—1,,—1,), and thus each energy level
except a = +3 and a = —3 is at least twofold de-
generate [4].

The necessary condition for a straightforward
use of the method of topological coordinates is
that there should be at least four two-lobe eigen-
vectors and that the corresponding energy levels
should be at most twofold degenerate. In practice
we have always found at least four eigenvectors
with two lobes, but there are some cases when they
form part of larger degenerate sets. Degeneracies
in polyhex torus graphs are often higher than 2.

For example, if the polyhex torus is a leapfrog, i.e.,
with both n — m and p — ¢ divisible by 3, then the
eigenvalue formula yields degeneracy 6 for all but
special eigenvalues. Sixfold degeneracies also oc-
cur, for example, for (n,m,p,q) = (3,2,2,-5). A
solution to the problem is to use an expanded to-
rus as follows. If a degeneracy problem is en-
countered for the parameters (n,m,p,q), there is
always an integer s, such that the method can be
used for the parameters (n,m,sp,sq) correspond-
ing to s-fold repetition of the unit that in
(n,m, p,q) would comprise the whole torus. One of
these units can then be transformed from an arc of
2n/s radian to a full circle to span the torus with
the original parameters.

4.3. The square lattice

The main chemical applications of the method
are likely to be to trivalent frameworks, but it can
be used for others. In the case of square lattices
which form four regular graphs on the torus we
can carry out the construction and calculation of
eigenvalues in the same way as for the polyhex.
Four independent integer parameters (n,m,p,q)
can be applied for the square-covered torus, but
now with a; = a(0, 1), and a, = a(1,0).

The discussion of degeneracies follows along
the same lines as before, but now:

ax = a(l,,1,) = 2(cos(K.) + cos(K,)) (10)
with

(=Iinm+1,p)

K. =K/(l,l,)=m=
(e ) (mp — nq)

(11)
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Fig. 5. Square-lattice toroidal polyhedra, drawn from their topological coordinates [Eq. 4)]: (a) (n,m,p,q) = (12,0,0,9)(k,, k,, k., k.) =

(2,3,4,5); (b) (n,m,p.q) = (12,3,5,9) (ks by ke ) = (2,3,4,5).

and

(Im — 1,q)

K, =K/(l,l,)=mn .
=Rl ) = )

(12)

Fig. 5 shows two typical cases.

5. Conclusion

The knowledge that a given trivalent graph is
to be realised on the surface of a torus rather than
a sphere can be used to give physically realistic
3D geometries based on four rather than three
eigenvectors of the vertex adjacency matrix. The
method is straightforward and gives good starting
coordinates of potential use in many applications.
Toroidal graphs seem to present more problems
of systematic degeneracy than their spherical
counterparts, but at least for those graphs that
are of interest as possible toroidal carbon net-
works, these problems can be sidestepped. Similar
extensions of the three-vector spherical topologi-
cal coordinate method are readily devised for
frameworks embedded in orientable surfaces of
higher genus, where for a surface of genus g,
3 + g vectors would give a complete specification
of coordinates.
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