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After summarizing the harmonic approach to topological coordinates and the null space embedding of graphs,
three-coordinated tiling of the plane by hexagons, pentagons, and heptagons are presented and used for the
construction of tubular, toroidal, and helical carbon structures. Physically realistic 3D geometries are formed
from the corresponding adjacency matrices, and the final structure was obtained with the help of Brenner-
potential based molecular mechanics methods.

INTRODUCTION

Geometric representation of graphs has a long history.1,2

In chemistry it happens very often that only the topological
arrangement of the atoms is given, but one needs for further
investigations the Cartesian coordinates as well. The structure
of a molecule, cluster, or other mesoscopic system is given
by a graph, and one is looking for a three-dimensional
representation. In this chemical graph the atoms are the
vertices and the interatomic bonds are the edges. The
topological coordinate method3-6 gives a very useful pro-
cedure for tackling this problem for fullerenes. Motivated
by the study of the Colin de Verdie`re number7 of graph it
was found that the null space of the generalized Laplacian
provides a planar embedding on the unit sphere.8 See further
references in ref 9.

In recent publications10-12 we presented a method for
calculating topological coordinates of toroidal structures. In
the present work we develop this method for topological
coordinates of nanotubes. A single-walled nanotube can be
generated by identifying two opposite edges of a paral-
lelogram cut from a hexagonal honeycomb lattice of carbon
atoms.13 It is known that the positive Gaussian curvature in
the carbon structures arises from the substitution of some
hexagons by pentagons and the negative curvature arises
from the substitution by heptagons.14,15 Thus a polyhex
carbon nanotube transforms to a deformed nanotube by
pentagonal and heptagonal substitution. Here we shall study
especially the helical and toroidal deformations. Although
both of them are already studied in the literature,15-24 here
we present a general description after summarizing the
topological coordinate method for fullerenes and the null
space embedding of graphs.

TOPOLOGICAL COORDINATES OF FULLERENES AND
THE NULL SPACE REPRESENTATION OF GRAPHS

The term of topological coordinates for fullerenes was
introduced by Manolopoulos and Fowler,3,4 and it was
inspired by Stone’s work25 on bonding in transition-metal

clusters. Stone considered a spherical cluster, for which the
angular part of the wave function was separated from the
radial part. The angular part is a solution of

where

is the Laplace operator in spherical coordinates. The solutions
of eq 1 are theYlm(θ,φ) spherical harmonics labeled by
integer quantum numbersl(g0) andm (- l e m e l). The
cluster was then treated as an assembly of atoms with nuclei
arranged on the surface of a sphere. Using linear combination
of atomic orbitals (LCAO) Stone found that the wave
function for the system can be well approximated by treating
the magnitude of the spherical harmonic functions at an atom
site as the coefficient in an LCAO molecular orbital. That
is if there aren atoms on a sphere of radiusr and their
positions are described by the spherical coordinates (r,θi,φi),
i ) 1, 2,...n, then

are the LCAO molecular orbitals. Theσi atomic orbitals are
sorbitals, or they are directed inward to the origin or outward
from the origin. In this reasoning Stone supposed further
that there was no mixing between orbitals which differ inl
or m and that a set of orbitals with a givenl shared the same
energy. So there is one orbital, theSσ, which is l ) 0, and
the three orbitals withl ) 1 are thePσ orbitals. The five
orbitals with l ) 2 are theDσ orbitals. By introducing the

and
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real forms of the spherical functions,26 we obtain that for
the lowest energy levelsSσ the ci coefficients are constants
and for the 3-fold degeneratedPx

σ, Py
σ, andPz

σ molecular
orbitals theci

Px, ci
Py, andci

Pz coefficients are the following:

and

From this construction it follows that the Cartesian
coordinates of the atoms in the cluster can be written down
as

and

Manolopoulos and Fowler3,4 supposed that if the atomic
positions of a spherical cluster can give good approximations
for the 3-fold degeneratedPx

σ, Py
σ, andPz

σ molecular orbitals
then thePx

σ, Py
σ, andPz

σ molecular orbitals of a spherical
cluster can give good approximations for the atomic positions
too.

Let the atomic arrangement of a fullerene (spherical
cluster) be given by ann-vertex graphG ) (V, E) whereV
is the set of vertices (set of atoms) andE is the set of edges
(set of interatomic bonds). LetA be the adjacency matrix
with elementsAij ) 1 if i and j are adjacent andAij ) 0
otherwise. LetH be the Hu¨ckel Hamiltonian-matrix with
Hii ) R ) 0 andHij ) -1 for bonding between atomsi and
j and Hij ) 0 otherwise. From this definition follows that
H ) -A. It is assumed further that

if ak is thekth eigenvalue ofA andck is the corresponding
eigenvector. It is clear thatck is an eigenvector ofH with
eigenvalueλk ) -ak. As in the fullerenes each carbon atom
has three neighborsa1 ) 3 andci

1 ) 1/xn (i ) 1, 2, 3,...,n).
This eigenfunction is theSσ eigenfunction of H with
eigenvalueλ1 ) -3. All that remains is to identify thePσ

x,
Pσ

y, andPσ
z eigenvectors ofH (of A).

For any subsetU of V let G| U denote the subgraph of
G induced byU. (That isG| U ) (U, E′), whereE′ ) all the
edges ofG that join two vertices inU.) For any vectorc
let supp(c) denote the support ofc, that is supp(c): )
{i| ci * 0}. Furthermore, we denotesupp+(c): ) {i| ci > 0}
andsupp-(c): ) {i| ci < 0}. The vectorc is bilobal if supp(c)
has exactly two connected componentssupp+(c) andsupp-(c).

If ck1, ck2, andck3 are the first three bilobal eigenfunctions
of A or H than Manolopoulos and Fowler introduced thexi,

yi, andzi topological coordinates of the carbon atoms in a
fullerene as

and

whereSR ) 1 or SR ) 1/x(a1-akR
) or any other appropriate

scaling factors.
It was found for the vast majority of fullerenes thatk1 )

2, k2 ) 3, andk3 ) 4. There are also exceptions such as the
C60 isomer ofD2 symmetry withk1 ) 2, k2 ) 4, andk3 ) 5.

Now let us turn to the null space representation of graphs.8

This representation was motivated by the study of theµ(G)
Colin de Verdière parameter7 of the graphG. Let G )
(V, E) be an undirected graph, assuming thatV ) {1,...,n}.
Thenµ(G) is the largest corank (the multiplicity of theλ )
0 eigenvalue) of any symmetric matricesM ) (Mij)∈R(n)

such that: (M1). For alli, j with i * j; Mij < 0 if i andj are
adjacent, andMij ) 0 if i and j are nonadjacent; (M2).M
has exactly one negative eigenvalue, of multiplicity 1; (M3).
There is no nonzero matrixX ) (Xij)∈R(n) such thatMX )
0 and such thatXij ) 0 wheneveri ) j or Mij * 0.

There is no condition on the diagonal entriesMii and the
condition (M3) is called the Strong Arnold Property or the
Strong Arnold Hypothesis. Condition (M1) means shortly
that the real symmetric matrixM is the shifted and negatively
weighted adjacency matrix of graphG. Thus the Colin de
Verdière parameterµ(G) is the largest multiplicity of the
second eigenvalue of the shifted and negatively weighted
adjacency matrix if it satisfies the Strong Arnold Condition.
The other name of matrixM satisfying condition (M1) is
generalized Laplacian.2 We say further that a vectorx∈ker(M)
has minimal support ifx is nonzero and for each nonzero
vector y∈ker(M ) with supp(y) ⊆ supp(x) one hassupp(y)
) supp(x).

Lovász and Schrijver proved the following theorem.
Theorem [Lovász and Schrijver8]. Let G ) (V, E) be a

3-connected planar graph, withV ) {1,...,n}. Let M ) Mij

be a symmetricn×n matrix with exactly one negative
eigenvalue (of multiplicity 1), such that fori, j with i * j, if
i andj are adjacent thenMij e 0 and ifi andj are nonadjacent
Mij ) 0, and such thatM has corank 3. Then the null space
kerM of M gives an embedding of G in the sphereS2 as
follows: Let a, b, andc be a basis ofkerM , and fori ∈V let
Φ(i): ) (ai, bi, ci); thenΦ(i) * 0, andΨ(i): ) Φ(i)/||Φ(i)||
embedsV in S2 such that connecting, for any two adjacent
verticesi, j, the pointsΨ(i) andΨ(j) by a shortest geodesic
on S2, gives a proper embedding ofG in S2.

In the proof of this theorem results were used from,9,27

which are related to nodal domaine theorems.28 Roughly
speaking, in the null space representation the multiplicity of
the second eigenvalue of the negatively weighted adjacency
matrix M is maximal ()3) and the basis vectors ofkerM
are mostly bilobal. Ifx∈ker(M ) is not bilobal, there is always
a bilobal basis vectory∈ker(M) with G|supp(y) ⊆ G|supp(x).
The topological coordinate method uses directly the first three
bilobal eigenvectors of the Hu¨ckel HamiltonianH ) -A.

ci
Px ) cP sin θi cosφi (6)

ci
Py ) cP sin θi sinφi (7)

ci
Pz ) cP cosθi (8)

xi ) r
ci

Px

cP
) r sin θi cosφi (9)

yi ) r
ci

Py

cP
) r sin θi sinφi (10)

zi ) r
ci

Px

cP
) r cosθi (11)

a1 > a2 g a3 g ... g an (12)

xi ) S1ci
k1 (13)

yi ) S2ci
k2 (14)

zi ) S3ci
k3 (15)
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As the corank ofH e 3 they represent the basis vectors of
kerM after splitting up the second eigenvalue ofM .

Topological Coordinates of Tori and Nanotubes.In refs
11 and 12 a method was presented for topological coordinates
of toroidal carbon structures. Let us suppose that the

topological structure of the torus is given by theG ) (V, E)
graph. LetA be the corresponding adjacency matrix and
H ) -A be the Hu¨ckel Hamiltonian-matrix. As before let
ck be thekth eigenfunction ofH (of A) andλk (ak ) -λk) be
the corresponding eigenvalue. We chose four bilobal eigen-

Figure 1. Tiling of the plane by heptagons and pentagons.|a1| )
nc ) 3, andl ) 1.

Figure 2. Tiling of the plane by heptagons, hexagons, and
pentagons.|a1| ) nc ) 6, andl ) 2.

Figure 3. Tiling of the plane by heptagons, hexagons, and
pentagons.|a1| ) nc ) 7, andl ) 3.

Figure 4. Tiling of the plane by heptagons, hexagons, and
pentagons.|a1| ) nc ) 10, andl ) 4.
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vectorsck1, ck2, ck3, andck4, and the topological coordinates
of the torus are calculated as

whereS1, S2, S3, andS4 appropriate scaling factors as before.
Concerning difficulties using only three bilobal eigenvectors
for the torus see ref 10.

In this formula the position of the pointi is the sum of a
vectorRi ) Ri(ci

k1, ci
k2) directed from the center of gravity

of the torus to a point on the circular spine and a vector
r i ) r i(ci

k3, ci
k4). If the radial vectorsRi ) Ri(ci

k1, ci
k2) and

r i ) r i(ci
k3, ci

k4) give a proper embedding of the graph in the
surface of the torus, then the radial vectorsRi ) Ri(ci

k3, ci
k4)

andr i ) r i(ci
k1, ci

k2) give a proper embedding too, but usually
the radial vectorsRi ) Ri(ci

k1, ci
k3) andr i ) r i(ci

k2, ci
k4) give

an improper embedding. These results show that the pairs
of eigenvectors (ck1, ck2) and (ck3, ck4) might be the corre-
sponding eigenvectors of two 2-fold degenerated eigenvalues
of a matrixM defined in a similar way as in the case of the
null space embedding of planar graphs.

As our purpose is to find appropriate Cartesian coordinates
we scaled theRi, r i position vectors individually in order to
obtain the relationsR ) |Ri| and r ) |r i| by taking the
average values of|Ri| and |r i| and not changing the
directions. By introducing theφi azimuthal angles between
the X axis and the direction of the vectorsRi we can write
Ri ) (R cosφi, R sinφi). With the help of the anglesφi the
torus can be transformed into a nanotube by the relations
xi ) S3ci

k3, yi ) S3ci
k4, andzi ) Rφi. That is the topological

coordinates of a nanotube obtained from the torus are the
following:

and

A similar formula can be written down if we define the
origin of the anglesφi at an angleR measured from the
direction of theX axis in the torus.

RESULTS

TheG ) (V, E) graph of a polyhex carbon nanotube and
a polyhex carbon torus can be obtained from a hexagonal
graphite sheet generated from two unit cell vectorsa1 )
a(x3/2, 1/2) anda2 ) a(x3/2, - 1/2).22 Each unit cell
contain two atoms at positions (0, 0) and (a, 0). Then a
parallelogram is constructed from the vectorsb1 ) na1 +
ma2 andb2 ) pa1 + qa2, wheren, m, p, andq are integers.
We shall call this parallelogram super cell. The graphG of
the nanotube is obtained by identifying two opposite edges
of the parallelogram, and identification of each pair of
opposite edges yields the graphG of a torus. It is known

Figure 5. Nanotube having the topological coordinates obtained
from parameters (4, 1, 0, 0, 5). The tiling is in Figure 4. with super
cell vectorsb1 ) a1 andb2 ) 5a2.

xi ) S1Ci
k1(1 + S4Ci

k4) (16)

yi ) S2Ci
k2(1 + S4Ci

k4) (17)

zi ) S3Ci
k3 (18)

Figure 6. The final structure after molecular mechanical relaxation
of the topological coordinates of Figure 5 is a toroidal structure.

xi ) S3Ci
k3 (19)

yi ) S4Ci
k4 (20)

zi ) Rarccos(S1Ci
k1/R) if Ci

k2 g 0 (21)

zi ) R(2π - arccos(S1Ci
k1/R)) if Ci

k2 < 0 (22)
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that the pentagonal defects in the polyhex planar graphite
sheet produce positive Gaussian curvature and that the effect
of heptagonal defects can be negative curvature.14,15

In Figures 1-4 periodic tilings are shown containing
hexagonal pentagonal and heptagonal faces. As for the graph
G ) (V, E) we need only the topological structure; the lattices
are presented in a stylized form after Kirby.29 The unit-cells
are determined by the horizontal vectora1 and vertical vector
a2. The heptagons and pentagons are placed in vertical
columns. The|a2| length of a2 is equal to the distance
between two horizontal lines in the column of heptagons and
|a1| ) nc, wherenc equals to the number of vertical columns

in the unit-cell. If the unit-cells are marked by the positive
integersl ) 1, 2,..., thennc ) (l - 1)2 + 3 if l is even
number andnc ) (l - 1)2 + 4 if l is odd number. As in the
case of polyhex lattice we can define the super cell
parallelogram by the vectorsb1 ) na1 + ma2 and b2 )
pa1 + qa2, wheren, m, p, andq are integers. Identification
of the opposite edges gives the graphG ) (V, E) of the
parameters (l, n, m, p, q). Figure 5 shows the nanotube with
the parameters (4, 1, 0, 0, 5) and calculated by the eqs 19-
22. Thus the lattice of Figure 4 was used, with the super
cell vectorsb1 ) a1 andb2 ) 5a2. The vectorsb1 andb2 are
perpendicular to each other, andb2 is parallel with the lines
of heptagons and pentagons. After obtaining the topological
coordinates for a given super cell of parameters (l, n, m, p,
q) in a tiling, the final structure was reached with the help
of a molecular mechanics method based on the Brenner
potential.30 In this relaxation process we supposed interac-
tions only between the first neighbors determined by the unit-
cells of the tiling. From the topological coordinates of Figure
5 we obtained the toroidal structure of Figure 6. In this open
torus the pentagons are at the places of positive Gaussian
curvatures, and the heptagons are found at the negative
Gaussian curvatures.

Let us see what happens if we chose the super cell of
parameters (4, 1,-1, 5, 5) with the tiling of Figure 4 and
with super cell vectorsb1 ) a1 - a2 andb2 ) 5a1 + 5a2.
Now b2 is not parallel with the lines of pentagons and
heptagons, but it is perpendicular tob1. Figures 7 and 8 show
the structures obtained before and after optimization, re-
spectively. As the vectorb2 is not parallel with the lines of
pentagons and heptagons, we obtained a helical structure. If
the graphG ) (V, E) is constructed from a purely polyhex
tiling, the relaxed structures always remain nanotube as there
are not pentagons and heptagons that are necessary for
positive and negative Gaussian curvatures.

Figure 7. Nanotube having the topological coordinates obtained
from parameters (4, 1,-1, 5, 5). The tiling is in Figure 4 with
super cell vectorsb1 ) a1 - a2 andb2 ) 5a1 + 5a2.

Figure 8. The final structure after molecular mechanical relaxation
of the topological coordinates of Figure 7 is a helical structure.
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In conclusion we can say that using a given periodic tiling
by hexagons pentagons and heptagons, the final relaxed
structure depends on the tiling and on the particular position
of the super cell.
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