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There are topologically determined energy levels concentrated around
the Fermi level. Graph theory is used to estimate the density of states
near the Fermi level (Er) of amorphous carbon (a-C) structure. Within
the ab initio Hartree—Fock calculations these states have lower energies
than Er, but they remain the highest occupied states in the electronic

density of states.
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THE PROBLEM of the midgap electronic structure
of amorphous carbon has received considerable atten-
tion in the last few years [1-5]. Usually the peak of the
density of states (DOS) at the Fermi level Ep is
attributed to isolated sp® sites or isolated linear Cs
chains of carbon atoms in sp* hybrid states. Some-
times it is mentioned that there are some other
arrangements of sp® atomic sites as well which give
electronic states around the Fermi level, but these
structures have not been described so far in the
literature. In our previous papers we used graph
theory to derive the structures which give peaks at
Er [6-8]. In this paper we present a simple rule within
tight-binding approximation in order to describe the
topology of sp® network providing states around the
Fermi level. Using the more realistic HF ab initio
method we controlled the results.

In a-C the central and the three first-neighbor
carbon atoms are only nearly planar in structure so
it is better to say that the central atom is in a fullerene
7 (Fr) state. To analyze DOS of the = or (Fm)-
electron network, we applied previously the Hiickel
theory with the usual ¢ and 3 parameters for the
diagonal and first neighbor interactions [6]. We
demonstrated that the existence or non-existence of
states around the Fermi level was closely related to the
topological arrangement of threefold-coordinated
carbon atoms. We described this topological arrange-
ment by means of a graph. The vertices of this graph
represent the threefold-coordinated atoms and the

edges correspond to the bonds between first neigh-
bors. Explained simply, this graph is the picture of the
cluster of threefold-coordinated carbon atoms. We
call it (Fm) network referring to the fact that the
threefold-coordinated atoms are in fullerene states.
In [6], we found that the Hiickel Hamiltonian has an
eigenvalue of ¢ = o if the graph of the m-electron
network does not have Sachs graph. (A Sachs graph
is such a subgraph of graphite-like atomic structure
which has only isolated edge- and/or ring-type com-
ponents [6, 10].) To interpret the peak at Er one must
know the multiplicity of € = o states. With the help of
graph theory we proved the following Theorem [11].

The multiplicity of the ¢ = o eigenvalue of a (Fr)

network is at least (m — n), if the N carbon atom of

this network can be partitioned into three disjoint sets

S1, S; and S; with the following properties:

1. There are not two carbon atoms in set S| which are
neighbors. The number of atoms in set .S} is m and
all of them have the same o parameter.

2. Set S, contains all of the atoms that are neighbors
of atoms in set S;. The number of atoms in set .S, is
n, (n < m).

3. The set S; contains those atoms that belong neither
to set Sy nor to set S,. Set S; is very often the empty
set 0.

In [11-13] this theorem is presented in a more
general way and it is not restricted to the one orbital
omne site approximation. We draw attention to the fact,
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that the number of degenerate states at e = o does not
depend on the non-zero off-diagonal matrix elements
of the Hamiltonian of the (Fr)-electronic network.
On the base of the above-mentioned Theorem we can
derive the exact number of degenerate € = o eigenva-
lues in a tight binding calculation, where the 8 ofi-
diagonal matrix elements depend on the first neighbor
atomic distances [13]. In practical applications, how-
ever, the diagonal matrix elements of the atoms in set
S; are not exactly equal to the same value of . In this
case the (m — n) degenerate eigenvalues are split up in
the vicinity of the Fermi level. Using this rule it is easy
to draw clusters providing electronic states at Fermi
level.

In order to confirm the tight-binding results, ab
initio Hartree—Fock calculations have been carried
out on some clusters of carbon atoms. The smallest
cluster contained 4 atoms while the biggest one has 64
carbon atoms in the (Fr) state. GAMESS ab initio
program package was used for investigations. The
standard STO-3G minimal basis set was applied for
the calculation. The dangling bonds at the cluster
boundaries were saturated by hydrogen atoms and
carbon atoms in sp® states. Two of the calculations are
presented here.

First, we considered the DOS for a compact
cluster of fused benzene rings containing 22 carbon
atoms (see Fig. 1). If we neglect the o states and use
the simple nearest-neighbor Hiickel approximation
the Sach graph theory provides two topologically
determined midgap states at the Fermi level
(m — n = 2). The results of ab initio calculations are
shown in Fig. 2(a). The DOS curve was obtained by
smoothing the one electron energies with Gaussian
line broadening (o =0.03a.u.). Occupied 7 and
unoccupied 7* states are present within the gap. The

Fig. 1. Fused benzene rings where solid circles and
solid squares are carbon atoms in sets S; and S,
respectively (m = 12, n = 10).
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Fig. 2. Three examples of density of states. (a) Fused
benzene rings. (b) Saturation of two carbon atoms
belonging to the set S; of Fig. 1. Solid and dashed
lines show the two different case of saturation. In both
cases the midgap states are disappeared. (c) One of the
saturated carbon atoms belongs to the set S; while the
other belongs to the set S, of Fig. 1. Now the number
of midgap states did not change.
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energy of occupied 7 states are lower than Ey. If we
saturate a pair of sp? carbon atoms belonging to set S|
(represented by solid circles on Fig. 1) by hydrogen
the Sachs graph theory predicts the absence of midgap
states. Two different arrangements were constructed
for the ab initio calculation and the results are shown
in Fig. 2(b). The midgap states completely disap-
peared from the gap. The last modification of this
finite cluster of fused six-fold rings was the following:
a carbon atom from set Sy and the other from set .S,
were saturated by hydrogen. The graph theory pro-
vides the same number of midgap states as are in the
unsaturated case. The ab initio electronic DOS shown
in Fig. 2(c) are in a very good correlation with the
original density of states [see Fig. 2(a)]. Recently, we
published a paper on an analysis of fused five- and
sevenfold rings [15]. In conclusion, from these results
we may state that the topologicaily determined states
predicted by Sachs graph theory at the Ey exist but
they are a little split up.

As a second step, a random network model of a 64
carbon cluster was considered. It was taken from the
C1120 model of Beeman er al. [16] and it was
investigated earlier [6]. It has four topologically deter-
mined electronic midgap states. Figure 3 displays two
ab initio results. The solid line represents the DOS
of original cluster. Saturating four atoms according
to the Sachs graph theory we can remove these
four mid-gap states. The dashed line shows the
DOS of this modified cluster. The small peak
below Er disappeared.
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Fig. 3. Two DOSs of a cluster containing 64 carbon
atoms. The solid line represents the density of states of
the original cluster having small peak near the Fermi
level while the dashed curve shows the DOS of
saturated cluster. The number of states around Er is
lower in the case of saturation.
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Fig. 4. ¢ and 7 bands of amorphous carbon. The
topologically determined states appear at higher
energies of the = band (shaded).

Finally, the conventional representation of ¢
and 7 state are displayed in Fig. 4. On the basis
of our HF ab initio results we conclude that the
topologically determined states, which appear at Ep
in tight-binding approximation, are shifted to the =
band in ab initio level calculations. So these topo-
logically determined states have lower energies than
Er, but they still remain the highest occupied states
in the electronic density of states and they decrease
the gap. The 7 band can be divided into two parts:
topologically determined states appear at higher ener-
gies, and the other 7 levels can be found below this
interval.
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