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Abstract

In order to find topologically determined electronic energy levels a special partitioning of basis functions is given. General
conditions are presented for the existence and non-existence of Sachs graphs.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In our previous papers [1–6] we demonstrated,
based on graph theory [7–17], the existence of topo-
logically determined eigenvalues of symmetrical
Hamiltonian matrices. These eigenvalues were equal
to some diagonal elements of the matrix and were not
depending on the actual values of other diagonal and
non-zero off-diagonal matrix elements. Such kind of
matrices can be found very easily in the study of the
electronic structure of molecules and clusters if a
tight-binding first neighbor approximation is used.
In these matrices the appropriate distribution ofHij �
0 zero matrix elements can guarantee the zero value of
several determinants that determine the coefficients of
the characteristic polynomial (recall that eigenvalues
are given as the roots of this polynomials). These
special distributions of off-diagonal zero and non-
zero matrix elements were described with the help
of the non-existence of Sachs graphs [7] of the
graph of the Hamiltonian matrix. In practical applica-
tions, however, the demonstration of the existence of

a special graph structure is much easier than the
demonstration of the non-existence of Sachs graphs.
In this paper a special graph structure is given that
describes the graphs withN vertices which do not
have Sachs graphs withN, �N 2 1�;…,�N 2 n 1 1�
vertices. In Section 2 the basic definitions and the
relations between matrices and graphs are given.
Theorem 1 of Section 3 clarifies when the above
mentioned graph structure is met and Theorem 2
shows its general properties. In Section 4 our results
are summarized in Theorem 3 without a reference to
the special terminology of graph theory.

2. Matrices and graphs

In this paper we shall study the eigenvalue problem
of the symmetrical square matrixH � �Hij � of size
N × N: The characteristic polynomialD�e� of H can
be written as [18,19]

D�e� � dete I 2 Hj j �
XN
n�0

ane
N2n

; �1�

whereI is the unit matrix and the coefficients ofD�e�
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are given by

an � �21�n
X

H�i1i2…in�; �2�
where a summation runs over all

N

n

 !
principal minors ofH of order n. These minors are
given by

H�i1i2…in� �
X

� j1 j2…jn�
�21�t�p�Hi1 j1Hi2 j2…Hin jn �3�

where t( p) is the parity of the permutationj1 j2…jn
with respect to the permutationi1i2…in:

Definition 1. The graphG� �V;E� is the graph of
square matrix H � �Hij � of size N × N if V �
{ v1; v2;…; vN} is the set ofN vertices and�vi ; vj� [
E if and only if Hij � Hij ± 0: Here E is the set of
edges, and (vi, vj) is the edge determined by the unor-
dered pair of verticesvi andvj.

From Definition 1 follows that the graphG of
matrix H is not a directed graph andG does not
contain multiple edges. In this paper graphG
means always a non-directed graph without multiple
edges.

Definition 2. Let j1 j2…jn be a permutation of
numbers i1i2…in with Hi1 j1Hi2 j2…Hin jn ± 0: Then
GS � �VS

;ES� is a Sachs graph ofG with n vertices
if VS � { vi1; vi2;…; vin} and ES � { �vi1; vj1�;

�vi2; vj2�;…�vin; vjn�} : GS is not a directed graph and
multiple edges are not allowed. Thus (vk, vl) and (vl,
vk) mean the same edge.

Lemma 1. Let G be a graph of matrixH and letGS

be a Sachs graph of graphG.ThenGS is a subgraph of
G and the components ofGS can only be one or more
of the following graphs (Fig. 1):

1. Loop graph GL � �VL
;EL�; where VL � {v k} ;

EL � { �vk; vk�} : The set ofGL components ofGS

is CL(GS).
2. Complete graph of two vertices and one edgeGE �
�VE

;EE�; where VE � {v k; vl} ;E
E � { �vk; vl�} :

The set ofGE components ofGS is CE(GS).
3. Cyclic graph GCY � �VCY

;ECY�; where VCY �
{v l1; vl2;…; vlK } ; ECY � { �vl1; vl2�; �vl2; vl3�;…;

�vlK21
; vlK �; �vlK ; vl1�} : The set ofGCY components

of GS is CCY(GS).

Proof. From Hi1 j1Hi2 j2…Hin jn ± 0: follows that
Hi1 j1 ± 0;Hi2 j2 ± 0;…;Hin jn ± 0: Thus GS is a
subgraph ofG. The statement concerning the compo-
nents ofGS follows from the fact that every permuta-
tion j1 j2…jn of numbersi1i2…in can be described as a
product of disjunct cycles. The cycle (k, k) corre-
sponds to the loop (vk, vk) and the cycle (k, l)(l, k) is
represented by the complete graph of edge (vk, vl). The
other cycles yield the cyclic graphs.A

Lemma 2. Let G be a graph of symmetrical square
matrix H of sizeN × N and suppose thatG does not
have Sachs graphs withN, N 2 1; …, N 2 n 1 1
vertices. Thene � 0 is a n-fold degenerated eigen-
value ofH (n is an integer).

Proof. If G does not have Sachs graph withN, N 2
1;…;N 2 n 1 1 vertices, we obtain thatHi1 j1
Hi2 j2…Hin jn � 0 for n $ N 2 n 1 1 and from Eqs.
(1)–(3) follows that

aN � aN21 � aN22 �…� aN2n11 � 0: �4�

A

Remark 1. The study ofe � Hkk eigenvalue can be
carried out with the study ofe � 0 eigenvalue of the
matrix H 0 � H 2 HkkI (Here I is the unit matrix).
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Fig. 1. Loop graphGL, complete graph with two vertices and one
edgeGE, and cyclic graphCCY (see Lemma 1).



3. Study of Sachs graphs

Theorem 1. Suppose that theN vertices of a non-
directed graph without multiple edgesG� �V;E� can
be partitioned into three disjunct setsV1, V2 and V3

with the following properties:

1. SetV1: If vi [ V1 and vj [ V1 then �vi ; vj� Ó E:
Loops are not allowed in V1 and the number of
vertices in setV1 is m . 0:

2. SetV2: If vi 0 [ V2 then there is at least one edge
�vi 0 ; vj 0 � [ E with vertexvj 0 [ V1: The number of
vertices in setV2 is n $ 0:

3. Set V3: vk [ V3 if vk Ó V1 and vk Ó V2: The
number of vertices in setV3 is N 2 m 2 n $ 0:

Then G� �V;E� does not have Sachs graphGS�
�VS

;ES� for NS . min�N;N 2 m 1 n�; where NS is
the number of vertices in Sachs graphGS� �VS

;ES�:

Proof. Suppose thatGS is a Sachs graph withNS

vertices. It is clear thatNS # N: Let the graphGS

has m0, n0 and M vertices in setsV1, V2 and V3 in
order. ThusM # N 2 m2 n andn0 # n: If a compo-
nentC of GS hasm00 ± 0 vertices inV1 andn00 vertices
in V2 thenm00 # n00; namelyC can not be a loop and if
C [ CE�GS� then m00 � n00: From C [ CCY�GS�
follows that C does not have neighboring vertices
from V1, namely the neighbors of vertices fromV1

are inV2. Thus inC [ CCY�GS� there is at least one
vertex fromV2 between every two vertices fromV1.
That ism00 # n00 and thusm0 # n0 # n:

We obtain NS � M 1 m0 1 n0 # �N 2 m2 n�1
m0 1 n0 # �N 2 m 2 n� 1 n 1 n � N 2 m1 n:
ThusNS # min�N;N 2 m1 n�: A

Remark 2. From Lemma 2 and Theorem 1 follows
that if the graphG of matrixH fulfills the properties of
Theorem 1 withn � m 2 n . 0; thene � 0 is an -fold
degenerated eigenvalue ofH. In Ref. [6] we proved
that the eigenvectors of thesee � 0 eigenvalues have

non-zero coefficients only on the basis vectors of set
V1.

Definition 3. The Sachs graphGSR is called reduced
Sachs graph ifGSR is a Sachs graph that does not
contain cycles with even number of vertices.

Lemma 3. If a graphG has a Sachs graphGS with
NSvertices it has also a reduced Sachs graphGSRwith
NS vertices.

Proof. We obtain GSR from GS by replacing the
cycles with even number of vertices by the non-
neighboring edges of the corresponding cycles.A

Definition 4. The reduced Sachs graphGSR of NS

vertices is a maximal reduced Sachs graph ofG if
for any other reduced Sachs graphGSR0 of G we have
NS0 # NS

: WhereNS0 is the number of vertices inGSR0.

Definition 5. In the graphG the chain ChSRwith odd
number of vertices is called reduced chain between
the verticesvi andvj if all the vertices of ChSR but vi

belong to the vertices ofGSR, and if we walk fromvi to
vj the edges�vk; vl� [ E�ChSR� alternatively do not
belong and belong toCE(GSR) (Fig. 2).

Lemma 4. Let ChSRbe a reduced chain between the
verticesvi andvj. Then there is such a reduced chain
ChSR0 between the verticesvj andvi that contains the
same vertices as ChSR (Fig. 3).

Proof. Let GSR be the reduced Sachs graph that is
used in the definition of ChSR. Let GSR0 be a reduced
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Fig. 2. A reduced chain ChSR between the verticesvi andvj ; vi Ó
V�GSR� andvj [ V�GSR�: The edges ofCE(GSR) are marked by thick
solid line. The edges with thin solid line do not belong toCE(GSR).
The vertexvi Ó V�GSR� is marked by X (see Definition 5).

Fig. 3. A reduced chain ChSR between the verticesvi and vj is
transformed to a reduced chain ChSR0 between the verticesvj and
vi. The edges ofCE(GSR) andCE(GSR0) are marked by thick solid line
(see Lemma 4).



Sachs graph that contains the same vertices asGSR but
vi is replaced by vj, and the edges�vk; vl� [
E�ChSR�; �vk; vl� [ CE�GSR� are replaced by the
edges �vk 0 ; vl 0 � [ E�ChSR� if �vk 0 ; vl 0 � Ó CE�GSR�:
Thus the chain ChSR0 defined with the help ofGSR0 is
a reduced chain between the verticesvj andvi. A

Lemma 5. Suppose that ChSR
1 is a reduced chain

between the verticesvi and vj and ChSR
2 is a reduced

chain between the verticesvi andvk. If �vj ; vk� [ E�G�
then there is such a reduced Sachs graphGSR0 of G
that has a greater number of vertices thanGSR. The
special casevi � vk is allowed (Fig. 4).

Proof. Let GSR be the reduced Sachs graph that is
used in the definition of ChSR

1 and ChSR
2 : Let GSR0 be a

reduced Sachs graph that contains the vertices ofGSR

and the vertexvi. The components ofGSR0 are obtained
from the components ofGSR by replacing theGE

components in ChSR
1 and ChSR

2 by the cycle of
ChSR

1 < ChSR
2 < �vj ; vk�: A

Lemma 6. Suppose that ChSR
1 is a reduced chain

between the verticesvi and vj and ChSR
2 is a reduced

chain between the verticesvk andvl. If �vj ; vl� [ E�G�
then there is such a reduced Sachs graphGSR0 of G
that has a greater number of vertices thanGSR. The
special casesvk � vl and/orvi � vj are also allowed
(Fig. 5).

Proof. Let GSR be the reduced Sachs graph that is
used in the definition of ChSR

1 and ChSR
2 : Let GSR0 be a

reduced Sachs graph that contains the vertices ofGSR

and all the vertices of chain ChSR
1 < ChSR

2 : The
components ofGSR0 are obtained from the components
of GSR by replacing theGE components in ChSR

1 and

I. László/ Journal of Molecular Structure (Theochem) 501–502 (2000) 501–508504

Fig. 4. A reduced chain ChSR
1 between the verticesvi andvj and a

reduced chain ChSR
2 between the verticesvi andvk are transformed to

the cycle ChSR
1 < ChSR

2 �vj ; vk� (see Lemma 5).

Fig. 5. A reduced chain ChSR
1 between the verticesvi andvj and a

reduced chain ChSR
2 between the verticesvk andvl are transformed to

the edges of reduced Sachs graphGSR0 (see Lemma 6).

Fig. 6. A reduced chain ChSR between the verticesvi andvj and a
cycle GCY are transformed to the edges of a reduced Sachs graph
GSR0 (see Lemma 7).



ChSR
2 by those edges of chain ChSR

1 < ChSR
2 that are

not belonging toGSR. A

Lemma 7. Suppose that ChSR is a reduced chain
between the verticesvi and vj and there is a vertex
vk [ V�GCY� (or vk [ V�GL� with �vj ; vk� [ E�G�;
then there is such a reduced Sachs graphGSR0 of G
that has a greater number of vertices thanGSR (Fig.
6).

Proof. Let GSR be the reduced Sachs graph that is
used in the definition of ChSR and vk [ V�GCY (or
vk [ V�GL�: Let GSR0 be a reduced Sachs graph that
contains the vertices ofGSR and the vertexvi. The
subgraph ChSR < GCY (or ChSR < GL) is connected
and have even number of vertices. The components

of GSR0are obtained from the components ofGSR by
replacingGCY (or GE) by the corresponding edges of
ChSR < GCY (or GSR < GL). A

Lemma 8. Suppose that ChSR is a reduced chain
between the verticesvk and vl. There are chains Ch1
and Ch2 between the verticesvi, vl andvj, vl, respec-
tively. Suppose further that all the edges of Ch1 and
Ch2 alternatively belong and not belong toCE(GSR)
and all the vertices of Ch1 and Ch2 belong to the
vertices of CE(GSR). If �vi ; vj� [ E�CE�GSR�� then
there is such a reduced Sachs graphGSR00 of G that
has a greater number of vertices thanGSR (Fig. 7).

Proof. Let GSR be the reduced Sachs graph that is
used in the definition of ChSR. With the help of
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Fig. 7. A reduced chain ChSR and chains Ch1 and Ch2 are transformed to the cycle Ch1 < Ch2 and edges ofGSR00 (see Lemma 8).



Lemma 4 we can find the reduced Sachs graphGSR0

and the reduced chain ChSR0 between the verticesvl

and vk. Let GSR00 be a reduced Sachs graph that
contains the vertices ofGSR0 and the vertexvl. The
components ofGSR00 are obtained from the compo-
nents of GSR0 by replacing theCE components of
Ch1 and Ch2 by the cycle Ch1 < Ch2: The graph
GRS00 has the vertices ofGRS and the vertexvk. A

Definition 6. Let GSR be a maximal reduced Sachs
graph of graphG and let the graphsG andGSR haveN
and �N 2 n� vertices, respectively,�n . 0�: The
subgraphGFR of G is called reduced forest of graph
G if it fulfills the following conditions.

The vertices ofGFR can be partitioned into the
following finite number of disjunct setsS1;S2;…
Sm;…; where these sets are constructed one after the
other with increasing indexm (Fig. 8).

1. vi [ S1 if and only if vi Ó V�GSR�:
2. vj [ V�CE�GSR�� for anyvj [ Sm�m . 1�:
3. Suppose that all the setsSm�m # 2k 1 1� are

known. Thenvl [ S2k12 if and only if vl Ó Sm for
(m # 2k 1 1), and there is a vertexvj 0 [ S2k11 for

that �vj 0 ; vl� [ E�G�: (There can be severalvj 0 [
S2k11 for that �vj 0 ; vl� [ E�G� but there is only
one vertexvj 00 [ S2k11 for that �vj 00 ; vl� [ E�GFR�:
In GFR the verticesvl [ S2k12 have only one neigh-
bor from setS2k11.)

4. For any vertexvi [ S2l there is a vertexvj [ S2l11

with the edge (vi, vj) [ E(CE(GSR)), �vi ; vj� [
E�GFR�. In GSR the verticesvi [ S2l11 have only
one neighbor from setS2l and the verticesvi [ S2l

have only two neighbors inGFR, one neighbor from
setS2l21 and one neighbor from setS2l11.

Lemma 9. Let GFR be a reduced forest then it does
not contain cycles.

Proof. SupposeGFR has a cycle CY. Then there is a
vertex vi [ V�CY�; vi [ Sn that for any other vertex
vj [ V�CY�; vj [ Sn 0 we haven 0 # n: But from Defi-
nition 6 (points (3) and (4)) follows thatn 0 , n and
any vertexvi [ Sn has only one neighborvj [ Sn 0 in
GFR if n 0 , n: Thus vi Ó V�CY� and the reduced
forestGFR does not contains cycles.A

Lemma 10. Let GFR be a reduced forest ofG then
for k . 1 the setsS2k andS2k11 have the same number
of vertices.

Proof. For vi [ S2k; �vi ; vj� [ E�CE�GSR��; vj [

S2k11 the edges (vi, vj) [ E(CE(GSR)) induce a one-
to-one correspondence between the setsS2k and
S2k11. See point (4) of Definition 6. A

Lemma 11. Let GFR be a reduced forest ofG and
vi [ S2k11; vj [ S2l11 (including the casevi � vj�
then�vi ; vj� Ó E�G�:

Proof. Let GSRbe the maximal reduced Sachs graph
that is used in the definition ofGFR. Suppose thatvi [
S2k11; vj [ S2l11 and �vi ; vj� [ E�G� with vi ± vj.
From Lemma 9 follows the existence of reduced
chains ChSR

1 and ChSR
2 ; where ChSR

1 is a reduced
chain between the verticesvi 0 [ S1; vi [ S2k11 and
ChSR

2 is a reduced chain between the verticesvj 0 [
S1; vj [ S2l11: Then if the reduced chains ChSR

1 and
ChSR

2 are disjunct, from Lemma 6 follows thatGSR is
not a maximal reduced Sachs graph. If the reduced
chains ChSR

1 and ChSR
2 are not disjunct, the Lemma 4
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Fig. 8. A reduced forestGFR with disjunct setsS1, S2, S3, S4, S5, S6

andS7. The vertices of setsSm are on imaginary vertical lines of the
figure. The edges ofE(CE(GSR)) are marked by thick solid lines. The
vertices marked by X do not belong to set V(GSR) (see Definition 6).



for the common part of ChSR
1 and ChSR

2 gives with
Lemmas 5 and 7 thatGSR is not a maximal reduced
Sachs graph. Thus�vi ; vj� Ó E�G� for vi [ S2k11; vj [
S2l11: If vi � vj Lemma 4 and the loop case of Lemma
7 give thatGSR is not a maximal reduced Sachs graph.
Thus�vi ; vi� Ó E�G� if vi [ S2k11: A

Lemma 12. If GSRis a maximal reduce Sachs graph
of graph G and NS , N; where NS and N are the
number of vertices inGSR and G, respectively, then
G has a reduced forestGFR.

Proof. Let us construct the setsSm of Definition 6
with increasingm . As NS , N the setS1 is not empty.
If all the setsSm�m # 2k 1 1� and the corresponding
edges ofGFR are known we can construct the setS2k12

as given in point (3) of Definition 6. IfS2k12 is the
empty set thenGFR is already constructed. Suppose
vi [ S2k12 but vi Ó V�CE�GSR�� in this case from
Lemma 7 follows thatGSR is not a maximal reduced
Sachs graph. Supposevi [ S2k12; vj [ S2k12 and
�vi ; vj� [ E�CE�GSR��: Now follows thatGSR is not a
maximal reduced Sachs graph. Namely in this case
there are two reduced chains ChSR

1 (for vk [ S1 andvi)
and ChSR

2 (for vl [ S1 andvi). There are three cases:

1. If the chains ChSR
1 and ChSR

1 are disjunct, there is a
chain ChSR

1 < ChSR
2 of even number of vertices

between thevk andvl. ThusGSRcan not be maximal
reduced Sachs graph.

2. If the chains ChSR
1 and ChSR

1 has only one common
vertex there is a cycle ChSR

1 < ChSR
2 in G andGSR

can not be maximal reduced Sachs graph.
3. If the chains ChSR

1 and ChSR
1 has more than one

common vertices, from Lemma 8 follows that
GSR is not a maximal reduced Sachs graph.

Thus the points (2) and (4) of Definition 6 can also be
fulfilled, andG has a reduced forestGFR. A

Theorem 2. Let GSR be a maximal reduced Sachs
graph of graphG� �V;E�: If the number of vertices
in GS is NS � �N 2 n� , N; then the vertices ofG can
be partitioned into the following three disjunct sets
V1, V2 andV3:

1. SetV1: If vi [ V1 and vj [ V1 then �vi ; vj� Ó E:
Loops are not allowed inV1 and the number of
vertices in setV1 is m . 0:

2. SetV2: If vi 0 [ V2 then there is at least one edge
�vi 0 ; vj 0 � [ E with vertexvj 0 [ V1: The number of
vertices in setV2 is n $ 0:

3. SetV3: vk [ V3 if vk Ó V1 andvk Ó V2:

4. n � m 2 n:

Proof. From Lemma 12 follows thatG has a
reduced forestGFR. Define the following sets:V1 �
<S2m11 of mvertices,V2 � <S2m of n vertices andV3

contains the vertices that are not belonging to the
reduced forestGFR. The disjunct setsV1, V2 and V3

fulfill the conditions of the Theorem. Namely:

1. From Lemmas 11 and 7 follows point (1) of
Theorem 2.

2. From point (3) of Definition 6 follows point (2) of
Theorem 2.

3. Point (3) of Theorem 2 is true becausevk [ V3 if
vk Ó S2n11 andvk Ó S2n:

4. From point (1) of Definition 6 follows thatS1 hasn
vertices and from Lemma 10 we obtain that
n � m2 n: A

4. Conclusions

In Theorem 1 we presented a special graph ofN
vertices that does not have Sachs graphs withN; �N 2
1�;…; �N 2 m1 n 1 1� vertices ifm . n: Theorem 2
shows that this “special” graph structure corresponds
to the general case. That is if a graph ofN vertices
does not have Sachs graphs withN; �N 2 1�;…; �N 2
n 1 1� vertices it has the structure of graph of
Theorem 1 forn � m2 n: In practical cases it is
much more easier to prove the existence of a graph
structure than to prove the non-existence of Sachs
graphs.

Suppose that the electronic structure of a system is
described by the symmetrical square matrixH � �Hij �
of sizeN × N and the graph of the shifted Hamiltonian
H 0 � H 2 HkkI fulfills the conditions of Theorem 1
with m2 n� n . 0; thene � Hkk is at least an-fold
degenerated eigenvalue of the HamiltonianH and
from Remark 1 follows that these eigenvectors are
localized on the setV1. We call these energy levels
topologically determined energy levels because they
do not depend on the actual values of the non-zero
off-diagonal andHii ± Hkk diagonal matrix elements.
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Thus the results of the previous paragraphs can be
summarized without reference to graph theory in the
following way.

Theorem 3. Suppose that theN basis functions of
the symmetrical Hamiltonian

H �
XN

i; j�1

uilHij k ju; �5�

can be partitioned into three disjunct setsV1, V2 and
V3 with the following properties:

1. SetV1: If kiu [ V1 and kju [ V1 thenHij � Hji � 0
and Hii � Hjj � a; wherea is the same value for
each basis functions of setV1. The number of basis
functions in setV1 is m . 0:

2. Set V2: If ki 0u [ V2 then there is at least one
k j 0u [ V1 for that Hi 0 j 0 � Hj 0 i 0 ± 0: The number of
basis functions in setV2 is n $ 0:

3. SetV3: kku [ V3 if kku Ó V1 and kku Ó V2:

Thus if we can construct the above defined setsV1, V2

andV3 with m . n then the valuee � a is an eigen-
value of the Hamiltonian matrixH and this eigenvalue
is at least (m 2 n)-fold degenerated. These eigen-
values are localized on the basis functions of setV1.

If the graph of the HamiltonianH (Eq. (5)) does
not have Sachs graph, there is an above-mentioned
partition of the basis functions.
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[2] I. László, Cs. Menyes, Phys. Rev. B 44 (1991) 7730.
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[5] I. László, Fullerene Sci. Technol. B 1 (1993) 11.
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