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Abstract

In order to find topologically determined electronic energy levels a special partitioning of basis functions is given. General
conditions are presented for the existence and non-existence of Sachs graphe.Elsevier Science B.V. All rights reserved.
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1. Introduction a special graph structure is much easier than the
demonstration of the non-existence of Sachs graphs.

In our previous papers [1-6] we demonstrated, In this paper a special graph structure is given that

based on graph theory [7—17], the existence of topo- describes the graphs witN vertices which do not

logically determined eigenvalues of symmetrical have Sachs graphs witN, (N — 1),...,(N— v+ 1)

Hamiltonian matrices. These eigenvalues were equal vertices. In Section 2 the basic definitions and the

to some diagonal elements of the matrix and were not relations between matrices and graphs are given.

depending on the actual values of other diagonal and Theorem 1 of Section 3 clarifies when the above

non-zero off-diagonal matrix elements. Such kind of mentioned graph structure is met and Theorem 2

matrices can be found very easily in the study of the shows its general properties. In Section 4 our results

electronic structure of molecules and clusters if a are summarized in Theorem 3 without a reference to

tight-binding first neighbor approximation is used. the special terminology of graph theory.

In these matrices the appropriate distributiorHgf=

0 zero matrix elements can guarantee the zero value of

several determinants that determine the coefficients of 2. Matrices and graphs

the characteristic polynomial (recall that eigenvalues

are given as the roots of this polynomials). These In this paper we shall study the eigenvalue problem

special distributions of off-diagonal zero and non- of the symmetrical square matrid = [H;] of size

zero matrix elements were described with the help N x N. The characteristic polynomidd(e) of H can

of the non-existence of Sachs graphs [7] of the be written as [18,19]

graph of the Hamiltonian matrix. In practical applica-

tions, however, the demonstration of the existence of N _
D(e) = deffel —H|=> a,e"™", 1)
- n=0
* Dedicated to Professor R."6ga on the occasion of his 80th ) ) ) =
year. wherel is the unit matrix and the coefficients Df €)
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Fig. 1. Loop graphG", complete graph with two vertices and one
edgeGF, and cyclic graptC®Y (see Lemma 1).

are given by

an = (1" > H(izip...iy),

where a summation runs over all
N

(+)

principal minors ofH of ordern. These minors are

given by

H(igip...in) = Z (—D'PH, ; Hi i, H,j,
(j1j2+-Jn)

@3]

(©)

wheret(p) is the parity of the permutatiop j,...j,
with respect to the permutatidis...i,.

Definition 1. The graphG = (V, E) is the graph of
square matrixH = [H;] of size NxN if V=
{Vi, Vo, ... W} is the set ofN vertices andv;, V) €

E if and only if Hj = H; # 0. Here E is the set of
edges, andy, v is the edge determined by the unor-
dered pair of verticeg; andv;.

From Definition 1 follows that the grapks of
matrix H is not a directed graph an@ does not
contain multiple edges. In this paper graph
means always a non-directed graph without multiple
edges.

Definition 2. Let j4j,...J, be a permutation of
numbers iji,...i, with H;; Hi,...H_j, # 0. Then
G° = (V5,E®) is a Sachs graph d& with n vertices
it VS={v,V,..vi} and E°={(v,V),
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(Viys Vip)s + (Vi 5 VG, )} - G® is not a directed graph and
multiple edges are not allowed. Thug,(v) and {,
Vi) mean the same edge.

Lemma 1. LetG be a graph of matrit and letG®
be a Sachs graph of gragh. ThenG®is a subgraph of
G and the components & can only be one or more
of the following graphs (Fig. 1):

1. Loop graph G- = (V- EY), where V' ={v,},
E" = {(v,Vp)}. The set ofG' components 06°
is CH(GY).

2. Complete graph of two vertices and one e@je=
(VE,EF), where VE={v,,v},EF = {(v,V))}.
The set ofc* components ofs° is CH(GY).

3. Cyclic graph G®Y = (V¢",E®Y), where V&' =
{Vll’ V|2, ""VIK}’ ECY = {(V|1,V|2), (VIZ,VI3)’ ey
Vi Vi) (v} The set ofG®" components
of G%is C*Y(G).

Proof. From H;;H,,...H j # 0. follows that
Hij, # O Hj, #0,...H; #0. Thus G° is a
subgraph ofG. The statement concerning the compo-
nents ofG® follows from the fact that every permuta-
tionjqjs...j, of numbersi,...i, can be described as a
product of disjunct cycles. The cyclé, (k) corre-
sponds to the loopv(, v) and the cyclel, 1)(I, k) is
represented by the complete graph of edge/(). The
other cycles yield the cyclic graphs

Lemma 2. LetG be a graph of symmetrical square
matrix H of sizeN X N and suppose that does not
have Sachs graphs with, N—1, ..., N—v+1
vertices Thene = 0 is a v-fold degenerated eigen-
value ofH (v is an integer)

Proof. If G does not have Sachs graph withN —
1..,N—v+1 vertices, we obtain thatH;;
Hi,j,---H,j, =0 for n=N-»+1 and from Egs.
(1)-(3) follows that

an =ay-1=an-2= = ay—,+1 = 0. (4)

O

Remark 1. The study o¢ = H,, eigenvalue can be
carried out with the study of = 0 eigenvalue of the
matrix H' = H — H | (Herel is the unit matrix)
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Fig. 2. A reduced chain G between the verticeg andv;; v &
V(GR)andy; € V(G®). The edges o€5(G"F) are marked by thick
solid line. The edges with thin solid line do not belongdy(GS").
The vertexy, & V(G%) is marked by X (see Definition 5).

3. Study of Sachs graphs

Theorem 1. Suppose that th&l vertices of a non-
directed graph without multiple edg€s= (V, E) can
be partitioned into three disjunct sets, V, andV;
with the following properties:

1. SetVy: If vi € V; andyv; € Vy then(v,,v)) € E.
Loops are not allowed in ¥and the number of
vertices in se¥;ism > 0.

2. SetV,: If v;; € V, then there is at least one edge
(i, vj) € E with vertexv;, € V4. The number of
vertices in se¥,isn= 0.

3.SetVz vy €V if vy €V, and vy & V,. The
number of vertices in sdt;isN—m—n=0.

ThenG = (V,E) does not have Sachs grafd® =
(VS,ES) for N° > min(N,N — m + n), where N° is
the number of vertices in Sachs grapfi = (V= E®).

Proof. Suppose thaG® is a Sachs graph with®
vertices. It is clear thaN® = N. Let the graphG®
hasm', n’ and M vertices in setd/;, V, and V; in
order. ThusM = N — m— nandn’ < n. If a compo-
nentC of GShasm” # 0 vertices inv; andn” vertices
in V, thenm” = n”, namelyC can not be a loop and if
Cc € CEG® then m’"=n". From C e C%'(G®
follows that C does not have neighboring vertices
from V;, namely the neighbors of vertices from
are inV,. Thus inC € C°Y(GS) there is at least one
vertex fromV, between every two vertices froi,.
That ism” = n” and thusm’ = n’ = n.

We obtain NS=M+m +n =(N—-m—n) +
m+n=MN-m-n+n+n=N-m+n.
ThusNS = min(N,N —m+n). O

Remark 2. From Lemma 2 and Theorem 1 follows
that if the graphG of matrixH fulfills the properties of
Theorem 1 withh = m — n > 0, thene = Ois a v-fold
degenerated eigenvalue Bf. In Ref. [6] we proved
that the eigenvectors of theee= 0 eigenvalues have
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non-zero coefficients only on the basis vectors of set
Vi

Definition 3. The Sachs grap6=Ris called reduced
Sachs graph iiGSR is a Sachs graph that does not
contain cycles with even number of vertices.

Lemma 3. If agraphG has a Sachs grap6® with
NSvertices it has also a reduced Sachs gr&ttwith
NS vertices

Proof. We obtain G®F from G° by replacing the
cycles with even number of vertices by the non-
neighboring edges of the corresponding cycles.

Definition 4. The reduced Sachs graj@r™ of N°
vertices is a maximal reduced Sachs graphGoif
for any other reduced Sachs gra@ﬁ” of G we have
NS = NS. WhereN® is the number of vertices i6S%.

Definition 5.  In the graphG the chain CA?with odd
number of vertices is called reduced chain between
the verticesy; andy; if all the vertices of CA® but v;
belong to the vertices @&°® and if we walk fromy; to

v the edges(v, V) € E(Ch°®) alternatively do not
belong and belong t&€5(G®®) (Fig. 2).

Lemma4. Let ChRbe areduced chain between the
verticesv; andv;. Then there is such a reduced chain
Ch®R between the verticeg andyv; that contains the
same vertices as CR(Fig. 3).

Proof. Let G®® be the reduced Sachs graph that is
used in the definition of CI} Let GSF be a reduced

Vi Vi SR
e e CH
Yoo

Vi Vj s

Fig. 3. A reduced chain CH between the vertices; andy, is
transformed to a reduced chain ®hbetween the verticeg and
vi. The edges oE5(G®F) andCF(GSF) are marked by thick solid line
(see Lemma 4).
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Fig. 4. A reduced chain G between the verticeg andy; and a
reduced chain C§$ between the verticegs andv, are transformed to
the cycle CER U Ch3R(v;, Vi) (see Lemma 5).

Sachs graph that contains the same vertic&s*asut
v, is replaced byv,, and the edges(v,V) €
E(ChR), (v, v)) € CE(G®R) are replaced by the
edges (i, Vi) € E(Ch°R) if (v, v) & CE(GR).
Thus the chain CI¥ defined with the help o6%F is
a reduced chain between the vertieeandv,. [

Lemma 5. Suppose that Gif is a reduced chain

i J
oe oo o  CHR
Vk vi
)é—o—o—o——c' ChSZR
\£ \7
Y—eo o—o o—o
Vi \4

*—e OO

Fig. 5. A reduced chain Cﬁ? between the verticeg andv; and a
reduced chain (j$ between the verticeg andyv, are transformed to
the edges of reduced Sachs grﬁﬁﬁ( (see Lemma 6).

Vi Vj Vk
X—eo—o—0—o—0—o --
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*—a9 *>— *>— o0

—

Fig. 6. A reduced chain Cft between the verticeg andy; and a
cycle G are transformed to the edges of a reduced Sachs graph
GR (see Lemma 7).

between the verticeg andv; and CE"is a reduced
chain between the verticesandv. If (vj, vi) € E(G)

then there is such a reduced Sachs gr of G

that has a greater number of vertices th&t" The
special casey; = v, is allowed (Fig. 4).

Proof. Let G°® be the reduced Sachs graph that is
used in the definition of GI¥ and CBR Let GSF be a
reduced Sachs graph that contains the vertic&3>6f
and the vertex;,. The components @R are obtained
from the components o6°R by replacing theGF
components in Gf and CBR by the cycle of
che®u ChRU (v, w). O

Lemma 6. Suppose that Gif is a reduced chain
between the verticeg andv; and CE" is a reduced
chain between the verticegandyv,. If (v;,v)) € E(G)
then there is such a reduced Sachs gr of G
that has a greater number of vertices th&i® The
special casesy = v, and/orv; = v; are also allowed

(Fig. 5).

Proof. Let G®R be the reduced Sachs graph that is
used in the definition of GIf and CBR Let GSF be a
reduced Sachs graph that contains the vertic&s>6f
and all the vertices of chain §RU ChSR. The
components o6F are obtained from the components
of G™R by replacing theG® components in Gift and
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Fig. 7. A reduced chain G and chains Chand Ch are transformed to the cycle €y Ch, and edges o&F (see Lemma 8).

Chs® by those edges of chain €hU ChS® that are
not belonging taG*R [

Lemma 7. Suppose that Cit is a reduced chain
between the verticeg and v; and there is a vertex
Vi € V(G") (or v € V(GY) with (vj,v,) € E(G),
then there is such a reduced Sachs gr of G
that has a greater number of vertices th&i" (Fig.
6).

Proof. Let GSR be the reduced Sachs graph that is
used in the definition of Cif and v, € V(G®Y (or

Vi € V(Gh). Let GSR be a reduced Sachs graph that
contains the vertices 08" and the vertexy. The
subgraph CFRU G®Y (or CHPRU G') is connected

of GSRare obtained from the components ®fR by
replacingG®" (or GF) by the corresponding edges of
ChPRUG®Y (orGSRUGH. O

Lemma 8. Suppose that Ci is a reduced chain
between the verticeg, andv,. There are chains Gh
and Ch between the vertices, v andv;, v, respec-
tively. Suppose further that all the edges of,@nhd

Ch, alternatively belong and not belong ©5(G>R

and all the vertices of Ghand Ch belong to the
vertices of C5(G®R. If (v;,v)) € E(C5(G®Y) then

there is such a reduced Sachs gra@ﬁw of G that

has a greater number of vertices th&t" (Fig. 7).

Proof. Let GS® be the reduced Sachs graph that is

and have even number of vertices. The componentsused in the definition of CIf. With the help of
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S| Sy S3 S4 S5 Sg S

Fig. 8. A reduced foresB™ with disjunct setsS;, $, S5, S S S
andsS;. The vertices of setS, are on imaginary vertical lines of the
figure. The edges d#(C5(G®")) are marked by thick solid lines. The
vertices marked by X do not belong to se3() (see Definition 6).

Lemma 4 we can find the reduced Sachs gr@ﬁﬁ
and the reduced chain €h between the verticeg
and v. Let G°F' be a reduced Sachs graph that
contains the vertices o&%F and the vertew,. The
components olGSR' are obtained from the compo-
nents of G by replacing theCF components of
Ch; and Ch by the cycle ChuU Ch,. The graph
G® has the vertices dB"° and the vertex,. [

Definition 6. Let GSR be a maximal reduced Sachs
graph of graplG and let the graph€ andG>R haveN
and (N — v) vertices, respectively(v> 0). The
subgraphG™ of G is called reduced forest of graph
G if it fulfills the following conditions.

The vertices ofG™® can be partitioned into the
following finite number of disjunct sets;,S,, ...
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that (v, vj) € E(G). (There can be severaj, €
Sy for that (v, v) € E(G) but there is only
one vertexvir € Sy for that (vjr,v) € E(G™.
In GMRthe vertices, € Sy, have only one neigh-
bor from setSy1.)

4. For any vertex; € Sy there is a vertex; € Sy
with the edge , v) € E(CHG™), (v,v) €
E(G™). In G®R the verticesv; € S,,; have only
one neighbor from se®, and the vertices; € S;
have only two neighbors i6™, one neighbor from
setS,_; and one neighbor from s&, 1.

Lemma 9. LetG™ be a reduced forest then it does
not contain cycles.

Proof. Supposé ™ has a cycle CY. Then there is a
vertexv; € V(CY),v, € S, that for any other vertex
Vi € V(CY),v; € S, we haver' = v. But from Defi-
nition 6 (points (3) and (4)) follows that’ < » and
any vertexv; € S, has only one neighbos € S,/ in
G™Rif v/ < v Thusy & V(CY) and the reduced
forestG™ does not contains cycles]

Lemma 10. Let G R be a reduced forest @b then
for k > 1the setsS,, and S, have the same number
of vertices.

Proof. For v € Sy, (v, V) € E(CE(G),y, €

Sx+1 the edges\, v) € E(CHG®) induce a one-
to-one correspondence between the s8is and
Sx+1- See point (4) of Definition 6. [

Lemma 11. Let G™® be a reduced forest db and
Vi € Spei1,Vj € Sy4a (including the casev; = v;)
then(Vi,Vj) & E(G).

Proof. LetG®Rbe the maximal reduced Sachs graph
that is used in the definition @™. Suppose that, €
Su+1, Y € Siv1 and (v, ) € E(G) with v # v,

S.. ... where these sets are constructed one after theFrom Lemma 9 follows the existence of reduced

other with increasing indep (Fig. 8).

1.v, € S if and only if v & V(G™R).

2. v; € V(CK(G®)) for anyv, € S,(u > 1).

3. Suppose that all the setS,(u=2k+ 1) are
known. Thenv, € Sy, if and only if vy & S, for
(n =2k + 1), and there is a vertex € Sy, for

chains CER and CBR where CHR is a reduced
chain between the verticeg € S,v; € Sy,1 and
Chs® is a reduced chain between the verticese

S, V&E Sy+1. Then if the reduced chains éﬁﬁand
ChsR are disjunct, from Lemma 6 follows th&R is

not a maximal reduced Sachs graph. If the reduced
chains CER and CBR are not disjunct, the Lemma 4
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for the common part of Gi¥ and CBR gives with
Lemmas 5 and 7 tha* is not a maximal reduced
Sachs graph. Thus;, vj) & E(G) forv; € Sy,1,V; €
Sy+1. If v = v Lemma 4 and the loop case of Lemma
7 give thatG>"is not a maximal reduced Sachs graph.
Thus(v,,v)) € E(G) if v € Sy1. O

Lemma 12. If G®Ris a maximal reduce Sachs graph
of graph G and N° < N, where NS and N are the
number of vertices itG>" and G, respectively, then
G has a reduced foress™.

Proof. Let us construct the se§, of Definition 6
with increasingu. AsN® < N the setS; is not empty.

If all the setsS,(u = 2k + 1) and the corresponding
edges of5™ are known we can construct the $gt, ,

as given in point (3) of Definition 6. 15, is the
empty set therG™® is already constructed. Suppose
V, € Syso but vi & V(CEG®R)) in this case from
Lemma 7 follows thatGS® is not a maximal reduced
Sachs graph. Supposg& € Sy.,,V; € Sy, and
Vi, ) € E(CH(G®)). Now follows thatG*" is not a
maximal reduced Sachs graph. Namely in this case
there are two reduced chains{tfor v, € S; andv)
and CBR (for v € S, andv;). There are three cases:

1. If the chains Ci and CHR are disjunct, there is a

chain CERU ChR of even number of vertices

between the, andv;. ThusG R can not be maximal
reduced Sachs graph.

. If the chains Cf and Ci{® has only one common
vertex there is a cycle GR U ChyRin G andGS®
can not be maximal reduced Sachs graph.

. If the chains CFR and CKR has more than one
common vertices, from Lemma 8 follows that
G*Ris not a maximal reduced Sachs graph.

Thus the points (2) and (4) of Definition 6 can also be
fulfilled, and G has a reduced fore@™. O

Theorem 2. Let GS®be a maximal reduced Sachs
graph of graphG = (V, E). If the number of vertices
in G%isN® = (N — ») < N, then the vertices d& can
be partitioned into the following three disjunct sets
V4, V,and Vi

1. SetVy: If v € V; andv; € V; then(v,,v)) € E.
Loops are not allowed iV, and the number of
vertices in se¥/; ism > 0.
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2. SetV,: If vi; € V, then there is at least one edge
(vir,vj)) € E with vertexv;, € V4. The number of
vertices in seV,isn= 0.

3. SetVaz vy € V5 if vy €V, andv, & V.

4. v=m-—n.

Proof. From Lemma 12 follows thatG has a
reduced foresG™. Define the following setsV; =
US,,+1 of mverticesV, = US,, of n vertices and/3
contains the vertices that are not belonging to the
reduced foresG™. The disjunct set®/;, V, and V,
fulfill the conditions of the Theorem. Namely:

1. From Lemmas 11 and 7 follows point (1) of
Theorem 2.
From point (3) of Definition 6 follows point (2) of
Theorem 2.
. Point (3) of Theorem 2 is true becaugec V; if
Vk € S,41 aNdVy & S,
. From point (1) of Definition 6 follows th&$, hasv
vertices and from Lemma 10 we obtain that

v=m-—n. U

2.

w

4. Conclusions

In Theorem 1 we presented a special graphNof
vertices that does not have Sachs graphs NWjttN —
1),...,(N—m+ n+ 1) vertices ifm > n. Theorem 2
shows that this “special” graph structure corresponds
to the general case. That is if a graphMfvertices
does not have Sachs graphs wih(N — 1), ...,(N —
v+ 1) vertices it has the structure of graph of
Theorem 1 forvr=m—n. In practical cases it is
much more easier to prove the existence of a graph
structure than to prove the non-existence of Sachs
graphs.

Suppose that the electronic structure of a system is
described by the symmetrical square maktix= [H;]
of sizeN x N and the graph of the shifted Hamiltonian
H' = H — Hyl fulfills the conditions of Theorem 1
with m—n= v > 0, thene = H is at least a-fold
degenerated eigenvalue of the Hamiltonidnand
from Remark 1 follows that these eigenvectors are
localized on the seV;. We call these energy levels
topologically determined energy levels because they
do not depend on the actual values of the non-zero
off-diagonal andH;; # Hy diagonal matrix elements.
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Thus the results of the previous paragraphs can be Tudomalyos Kutatai Alap (Grant no. T025017,
summarized without reference to graph theory in the T029813) and by the Akadeiai Kutatasi Phyazat

following way.

Theorem 3. Suppose that th&l basis functions of
the symmetrical Hamiltonian

N
H= Z liH; (]

=1

, )

can be partitioned into three disjunct sats, V, and
V3 with the following properties:

1. SetV: If <|| eV, and<j| eV, thenHij = HJI =0
andH; = Hj = «, wherea is the same value for
each basis functions of s&f. The number of basis
functions in se¥/; ism > 0.

2. Set V,: If (i’ €V, then there is at least one
(j'| € V4 for that Hyjy = Hyir # 0. The number of
basis functions in se¢,isn = 0.

3. SetVs: (k| € V3 if (k| & V1 and (k| & V,.

Thus if we can construct the above defined ¥gtd/,
andV; with m > n then the value = « is an eigen-
value of the Hamiltonian matril and this eigenvalue
is at least(m — n)-fold degenerated. These eigen-
values are localized on the basis functions of\éet

If the graph of the Hamiltoniatd (Eq. (5)) does

not have Sachs graph, there is an above-mentioned

partition of the basis functions.
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