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1 Formal Scattering Theory

1.1 Resolvents

Spectrum of Hermitean operator, H, over a Hilbert space, H

Discrete spectrum Continuous spectrum

Hϕn = εnϕn Hϕα (ε) = εϕα (ε)
(ϕn ∈ H) (ϕα (ε) = limn→∞ χn , χn ∈ H)

〈ϕn|ϕm〉 = δnm 〈ϕα (ε) |ϕα′ (ε′)〉 = δαα′δ (ε− ε′)

The (generalized) eigenfunctions form a complete set,

∑

n

|ϕn〉〈ϕn|+
∫
dε
∑

α

|ϕα (ε)〉〈ϕα (ε) | = I . (1)

Notation: Sp(H), %(H) = C \ Sp(H)

Units: ~ = 1, m = 1/2, e2 = 2 ⇒ a0 = ~2/me2 = 1, Ryd = ~2/2ma2
0 = 1

The free-particle Hamiltonian,

H0 = ~p2 = −∆ , (2)

has no discrete spectrum over the Hilbert-space, H=L2
(
R3
)
. However,

H0ϕ (~p) = p2ϕ (~p) , ϕ (~p;~r) =
1

(2π)3/2
ei~p~r , (3)

ϕ (~p) = lim
n→∞

χn (~p) , χn (~p;~r) =
1

(2π)3/2
exp

(
i~p~r − r2/4n2

)
,

and χn (~p) ∈ L2
(
R3
)
. Thus, the continuous spectrum of H0 covers the set of

non-negative numbers.
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The resolvent of H is defined for any z ∈ ρ (H) as

G (z) = (zI −H)−1 . (4)

It obviously satisfies,

G (z∗) = G (z)† , (5)

therefore, it is Hermitean only for ε ∈ ρ (H) ∩ R. From the relation,

G (z1)− G (z2) = (z2 − z1)G (z1)G (z2) , (6)

immediately follows that
dG (z)

dz
= −G (z)2 , (7)

and, by noting that G (z) is bounded, it can be concluded that the mapping

z → G (z) is analytic for z ∈ ρ (H). From Eq. (1) the spectral resolution of the

resolvent can be written as

G (z) =
∑

n

|ϕn〉〈ϕn|
z − εn

+

∫
dε
∑

α

|ϕα (ε)〉〈ϕα (ε) |
z − ε . (8)

Relationship between the eigenvalues of H and the singularities of G (z):

discrete spectrum of H −→ poles of first order of G (z)

continuous spectrum of H −→ branch cuts of G (z)
. (9)

Therefore, at the real axis the so-called up- and down-side limits of G (z) are

introduced,

G± (ε) = lim
δ→+0

G (ε± iδ) (ε ∈ R) , (10)

having the following relationship,

G± (ε) = G∓ (ε)† . (11)

In particular, for ε ∈ ρ (H) ∩ R

G+ (ε) = G− (ε) = G (ε) . (12)
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Using the identity,

lim
δ→+0

1

ε− ε′ ± iδ = P

(
1

ε− ε′
)
∓ iπδ(ε− ε′) ,

with P denoting the principal value distribution,

ReG+ (ε) = ReG− (ε)

=
∑

n

|ϕn〉〈ϕn|P
(

1

ε− εn

)
+

∫
dε′
∑

α

|ϕα (ε′)〉〈ϕα (ε′) |P
(

1

ε− ε′
)
, (13)

and

ImG+ (ε) = − ImG− (ε)

= −π
(∑

n

|ϕn〉〈ϕn| δ (ε− εn) +

∫
dε′
∑

α

|ϕα (ε′)〉〈ϕα (ε′) | δ (ε− ε′)
)
, (14)

where the real and imaginary part of an operator, A is defined as

ReA =
1

2

(
A+A†

)
and ImA =

1

2i

(
A−A†

)
. (15)

Generally, a given representation of the resolvent is called the Green function.

On the basis of the eigenfunctions of H,

Gnn′ (z) = 〈ϕn|G (z) |ϕn′〉 =
∑

m

〈ϕn|ϕm〉〈ϕm|ϕn′〉
z − εm

= δnn′
1

z − εn
(16)

and, similarly,

Gαα′ (z; ε, ε′) = δαα′δ (ε− ε′) 1

z − ε , (17)

while in the coordinate (real-space) representation,

G (z;~r, ~r′) =
∑

m

ϕn (~r)ϕn (~r′)∗

z − εn
+

∫
dε
∑

α

ϕα (ε;~r)ϕα (ε;~r′)∗

z − ε . (18)

The primary task of the Multiple Scattering Theory (or Korringa-Kohn-Rostoker

method) is to give a general expression for G (~r, ~r′; z).
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The Green function of free particles

G0 (z;~r, ~r′) =
1

(2π)3

∫
d3k

ei
~k(~r−~r′)

z − k2
, (19)

which can be evaluated as follows,

G0 (z;~r, ~r′) =
1

(2π)3

∫ ∞

0

dk k2 1

z − k2

∫
d2k̂ ei

~k(~r−~r′)

= − i

8π2 |~r − ~r′|

(∫ ∞

−∞
dk k

eik|~r−~r
′|

z − k2
−
∫ ∞

−∞
dk k

e−ik|~r−~r
′|

z − k2

)
.

Obviously, the first and the second integral in the last expression can be closed

in the upper and the lower complex semiplane, respectively. Thus, by choosing

p ∈ C, Im p > 0, such that z = p2 yields

G0 (z;~r, ~r′) =
1

4π |~r − ~r′|

[
Res(

keik|~r−~r
′|

(p− k) (p+ k)
, p)− Res(

ke−ik|~r−~r
′|

(p− k) (p+ k)
,−p)

]

= − eip|~r−~r
′|

4π |~r − ~r′| , (20)

while by choosing p ∈ C, Im p < 0, such that z = p2, one obtains

G0 (z;~r, ~r′) =
1

4π |~r − ~r′|

[
Res(

keik|~r−~r
′|

(p− k) (p+ k)
,−p)− Res(

ke−ik|~r−~r
′|

(p− k) (p+ k)
, p)

]

= − e−ip|~r−~r
′|

4π |~r − ~r′| . (21)

Clearly, independent of the choice of the square-root of z (p1 = −p2) the ex-

pression of G0 (z;~r, ~r′) is unique. In particular,

G±0 (ε;~r, ~r′) = − e±ip|~r−~r
′|

4π |~r − ~r′| (ε > 0 , p =
√
ε) , (22)

and

G+
0 (ε;~r, ~r′) = G−0 (ε;~r, ~r′) = − e−p|~r−~r

′|

4π |~r − ~r′| (ε < 0 , p =
√
−ε) . (23)
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1.2 Observables and Green functions

In a system of independent fermions, the measured value of a one-particle ob-

servable, say A, is given by

A = Tr (f (H) A) ,

where A is the Hermitian operator related to A and, the Fermi-Dirac (density)

operator is defined by

f (H) =
(
I + eβ(H−µI)

)−1

,

with β = 1/kBT , T the temperature and µ the chemical potential. Evaluating

the trace in the basis of the eigenstates of H, the above expression reduces to

A =
∑

n

f (εn) 〈ϕn| A |ϕn〉+

∫
dε
∑

α

f (ε) 〈ϕα (ε) | A |ϕα (ε)〉 , (24)

where f (ε) = 1/
(
1 + eβ(ε−µ)

)
. Recalling Eq. (8) one can write,

f (z) Tr (AG (z)) =
∑

n

f (z) 〈ϕn| A |ϕn〉
z − εn

+

∫
dε
∑

α

f (z) 〈ϕα (ε) | A |ϕα (ε)〉
z − ε ,

which, in order to relate to Eq. (24), has to be integrated over a contour in the

complex plane, C comprising the spectrum of H. In here, Cauchy’s theorem is

used, i.e., for a closed contour oriented clock-wise,

− 1

2πi

∮
dz
g (z)

z − a =




g (a) if a is within the contour

0 if a is outside of the contour
,

where it is supposed that the function g has no poles within the contour. Thus

the poles of the Fermi-Dirac distribution,

f (z) ' kBT
1

z − zk
for z ' zk , zk = µ+ i (2k + 1)πkBT (k ∈ Z) ,

have also to be taken into account,

A = − 1

2πi

∮

C

dz f (z)Tr (AG (z))− kBT
∑

k

Tr (AG (zk)) , (25)
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where only the Matsubara poles, zk, within the contour C are considered in

the sum of the rhs. By splitting the contour into (symmetric) upper and lower

parts and making use of Eq. (5), Eq. (25) can further be transformed into

A = −1

π
Im

∫

y

dz f (z)Tr (AG (z))− 2kBT
∑

Im zk>0

ReTr (AG (zk)) . (26)

By deforming the contour to the real axis, the familiar expressions,

A = −1

π
Im

∞∫

−∞

dε f (ε)Tr
(
AG+ (ε)

)
=

1

π
Im

∞∫

−∞

dε f (ε)Tr
(
AG− (ε)

)
, (27)

can be deduced. In particular, the number of electrons can be calculated by

taking A = I,

N = −1

π
Im

∞∫

−∞

dε f (ε)TrG+ (ε) =

∞∫

−∞

dε f (ε) n (ε) , (28)

where the density of states (DOS) is defined by

n (ε) = −1

π
ImTrG+ (ε) =

1

π
ImTrG− (ε) . (29)

Thus, the discontinuity of the imaginary part of the Green function at the real

axis is directly related to the density of states.

.

DOS of free particles

From Eq. (22) one immediately can derive for ε > 0,

ImG+
0 (ε;~r, ~r) = − ImG−0 (ε;~r, ~r) = − lim

R→0

sin (κR)

4πR
= − κ

4π
,

therefore, the density of states normalized to a unit volume can be written as

n0 (ε) = Θ (ε)

√
ε

4π2
, (30)

since for ε < 0 the Green function is real.
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1.3 The T -operator

Defining the Hamiltonian, H as a sum of the Hamiltonian of a reference system,

H0 and the operator of perturbation, V

H = H0 + V , (31)

the corresponding resolvents are coupled by

G (z) = (zI −H0 − V)−1

= ((zI −H0) (I − G0 (z)V))−1

= (I − G0 (z)V)−1 G0 (z) , (32)

or in terms of Dyson equations,

G (z) = G0 (z) + G (z)VG0 (z) = G0 (z) + G0 (z)VG (z) , (33)

which can be solved by successive iterations to yield the Born series,

G (z) = G0 (z) + G0 (z)VG0 (z) + G0 (z)VG0 (z)VG0 (z) + . . . . (34)

By reformulating Eq. (34) as

G (z) = G0 (z) + G0 (z) (V + VG0 (z)V + . . .)G0 (z) , (35)

it is worth to define the so-called T -operator,

T (z) = V + VG0 (z)V + VG0 (z)VG0 (z)V + . . . , (36)

such that

G (z) = G0 (z) + G0 (z) T (z)G0 (z) . (37)
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The subsequent relationships between the resolvents and the T -operator can

easily be proved:

T (z) = V + VG (z)V , (38)

T (z) = V + VG0 (z) T (z) = V + T (z)G0 (z)V , (39)

G0 (z) T (z) = G (z)V , (40)

as well as

T (z)G0 (z) = VG (z) . (41)

Since V is Hermitean, similar to the resolvents the T -operator satisfies

T (z∗) = T (z)† , (42)

and, in particular, for the side-limits

T + (ε)† = T − (ε) . (43)

From Eqs. (38), (7), (40) and (41):

dT (z)

dz
= V dG (z)

dz
V = −VG (z)G (z)V

= −T (z)G0 (z)2 T (z)

⇓
dT (z)

dz
= T (z)

dG0 (z)

dz
T (z) . (44)
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1.4 Scaling transformation of the resolvents

In general, we are not restricted to choosing the system of free particles as

reference. Let us consider the Hamiltonian,

H′ = H0 + U , (45)

with the corresponding perturbation,

V ′ = V − U , (46)

such that

H = H0 + V = H′ + V ′ . (47)

From Eqs. (34-39) immediately follows, that the resolvent G (z) can be ex-

pressed in terms of the resolvent of the new reference system,

G ′ (z) = (zI −H′)−1
. (48)

or

G ′ (z) = G0 (z) + G0 (z)UG ′ (z) , (49)

and a new T -operator,

T ′ (z) = V ′ + V ′G ′ (z) T ′ (z) , (50)

as

G (z) = G ′ (z) + G ′ (z) T ′ (z)G ′ (z) . (51)

Eqs. (49-51) represent the formal background to the so-called Screened Korringa-

Kohn-Rostoker (SKKR) theory to be discussed later.
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1.5 The Lippmann-Schwinger equation

Suppose ϕα (ε) is a generalized eigenfunction of H0,

(εI −H0)ϕα (ε) = 0 . (52)

Let us seek for a generalized eigenfunction of H,

(εI −H0)ψα (ε) = Vψα (ε) , (53)

in the form of

ψα (ε) = ϕα (ε) + δψα (ε) . (54)

Clearly, for vanishing perturbation, V = 0, δψα (ε) = 0 is expected. By

substituting Eq. (54) into (53) we get

(εI −H0) (ϕα (ε) + δψα (ε)) = (εI −H0) δψα (ε) = Vϕα (ε) + Vδψα (ε) , (55)

where we made use of Eq. (52), from which

(εI −H) δψα (ε) = Vϕα (ε) (56)

can be deduced. Since, over the spectrum of H, the inverse of εI −H is defined

through two different side-limits, two different solutions exist,

ψ±α (ε) = ϕα (ε) + G± (ε)Vϕα (ε) , (57)

or by using Eq. (40)

ψ±α (ε) = ϕα (ε) + G±0 (ε) T ± (ε)ϕα (ε) . (58)

Moreover, from Eqs. (39) and (58) it follows that

Vψ±α (ε) =
(
V + VG±0 (ε) T ± (ε)

)
ϕα (ε) = T ± (ε)ϕα (ε) , (59)

therefore,

ψ±α (ε) = ϕα (ε) + G±0 (ε)Vψ±α (ε) . (60)
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1.6 The optical theorem

In general, energy conservation requires to use only the so-called on-the-energy

shell matrixelements of the T -operator,

T±αα′ (ε) = 〈ϕα (ε) |T ± (ε) |ϕα′ (ε)〉 . (61)

Eq. (43) implies the relationship,

T+
αα′ (ε) = T−α′α (ε)∗ . (62)

Starting from Eq. (38) the matrixelements of T ± (ε) can be expressed as

T±αα′ (ε) = Vαα′ (ε) + 〈ϕα (ε) |VG± (ε)V|ϕα′ (ε)〉 , (63)

where

Vαα′ (ε) = 〈ϕα (ε) |V|ϕα′ (ε)〉 . (64)

Taking the difference,

T+
αα′ (ε)− T−αα′ (ε) = 〈ϕα (ε) |V(G+ (ε)− G− (ε)︸ ︷︷ ︸

2i ImG+(ε)

)V|ϕα′ (ε)〉 , (65)

the spectral resolution of ImG+ (ε) , Eq. (14), can be used to give,

T+
αα′ (ε)− T−αα′ (ε) = −2πi

∑

β

〈ϕα (ε) |V|ψ+
β (ε)〉〈ψ+

β (ε) |V|ϕα′ (ε)〉 , (66)

which by employing Eqs. (59) and (62) can be written as

T+
αα′ (ε)− T−αα′ (ε) = −2πi

∑

β

T+
αβ (ε)T−βα′ (ε) , (67)

referred to as the generalized optical theorem.
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Using matrix notation,

T± (ε) =
{
T±αα′ (ε)

}
,

Eq. (67) can be rewritten into the compact form,

T+ (ε)− T− (ε) = −2πi T+ (ε)T− (ε) , (68)

or

T+ (ε)−1 − T− (ε)−1 = 2πi I . (69)

Multiplying the above equation with T+ (ε) from the left and with T− (ε) from

the right, it also follows that

T+ (ε)− T− (ε) = −2πi T− (ε)T+ (ε) , (70)

consequently, the operators T+ (ε) and T− (ε) commute with each other,

T+ (ε)T− (ε) = T− (ε)T+ (ε) . (71)

1.7 The S-matrix

In order to get more insight into the physical meaning of the optical theorem

we introduce the so-called S-matrix as

ψ+
α (ε) =

∑

α′

ψ−α′ (ε) Sα′α (ε) , (72)

or

Sα′α (ε) = 〈ψ−α′ (ε) |ψ+
α (ε)〉 , (73)

which has to be unitary, since both sets of the functions, {ψ+
α (ε)} and {ψ−α (ε)} ,

should be complete. Making use of Eq. (59), the S-matrix can be expressed in

terms of the T -matrices:

Vψ+
α (ε) =

∑

α′

Vψ−α′ (ε) Sα′α (ε)

⇓
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T + (ε)ϕα (ε) =
∑

α′

T − (ε)ϕα′ (ε) Sα′α (ε)

⇓

T+
βα (ε) =

∑

α′

T−βα′ (ε) Sα′α (ε)

⇓

T+ (ε) = T− (ε)S (ε) ,

thus,

S (ε) = T− (ε)−1 T+ (ε) = I − 2πiT+ (ε) , (74)

where the last expression was derived from Eq. (69). Consequently,

S (ε)S (ε)† =
(
I − 2πiT+ (ε)

) (
I + 2πiT− (ε)

)

= I + 2πi(T− (ε)− T+ (ε)− 2πiT+ (ε)T− (ε)︸ ︷︷ ︸
=0

) = I , (75)

i.e., the S (ε) matrix is unitary as required. Note that this directly follows also

from Eq. (71).

In a diagonal representation, the S-matrix obviously has the form,

Sαα′ (ε) = δαα′ e
i2δα(ε) , (76)

where δα (ε) ∈ R is called the (generalized) phaseshift.. From (74), therefore,

ei2δα(ε) = 1− 2πiT+
αα (ε)

⇓

T±αα (ε) = −1

π
e±iδα(ε) sin δα (ε) . (77)
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1.8 Integrated density of states: the Lloyd formula

Substituting Eq. (37) into (29) yields

n (ε) = −1

π
ImTr

(
G+

0 (ε) + G+
0 (ε) T + (ε)G+

0 (ε)
)

= n0 (ε) + δn (ε) , (78)

with

n0 (ε) = −1

π
ImTr

(
G+

0 (ε)
)
, (79)

and

δn (ε) = −1

π
ImTr

(
G+

0 (ε) T + (ε)G+
0 (ε)

)

= −1

π
ImTr

(
G+

0 (ε)2 T + (ε)
)

=
1

π
ImTr

(
dG+

0 (ε)

dε
T + (ε)

)
, (80)

where we made use of Eq. (7). Employing Eq. (44) one can derive,

δn (ε) =
1

π
ImTr

(
T + (ε)−1 dT + (ε)

dε

)

=
d

dε

(
1

π
ImTr ln T + (ε)

)

=
d

dε

(
1

π
Im ln detT+ (ε)

)
. (81)

The integrated DOS,

N (ε) =

ε∫

−∞

dε′ n (ε′) , (82)

can then be directly expressed as

N (ε) = N0 (ε) + δN (ε) , (83)
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where

N0 (ε) =

ε∫

−∞

dε′ n0 (ε′) (84)

and

δN (ε) =
1

π
Im ln detT+ (ε) , (85)

referred to as the Lloyd formula.

Quite trivially,

δN (ε) = −1

π
Im ln detT− (ε) , (86)

therefore,

δN (ε) =
1

2π
Im ln det

(
T− (ε)−1 T+ (ε)

)

=
1

2π
Im ln detS (ε) . (87)

In diagonal representation, see Eq. (76), this reduces to

δN (ε) =
1

2π
Im ln

∏

α

ei2δα(ε) =
1

π

∑

α

δα (ε) , (88)

known as the famous Friedel sum-rule. The excess DOS caused by the pertur-

bation can then be written as

δn (ε) =
1

π

∑

α

d δα (ε)

dε
, (89)

having sharp peaks at resonances, i.e., at rapid changes of the phaseshifts when

crossing π
2 .
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2 The Korringa-Kohn-Rostoker Green function method

2.1 Characterization of the potential

Let us divide the configurational space, Ω (isomorphic to R3) into disjunct

domains, Ωn

Ω = ∪n∈NΩn ,

Ωn ∩ Ωm = 0 .

The potential V can then be written as a sum of single-domain potentials, Vn,

V (~r) =
∑

n∈N
Vn (~r) (90)

Vn (~r) =




V (~r) for ~r ∈ Ωn

0 for ~r ∈ Ω \ Ωn

. (91)

The center of a particular domain, Ωn defined by the position vector, ~Rn is usu-

ally associated with the position of the atomic nucleus, regarded for simplicity

to be point-like. For open systems or surfaces, the centers of the so-called empty

spheres, describing the interstitial region or the vacuum, are, however, not re-

lated to singularities of the potential. In electronic structure calculations, first

the atomic positions, ~Rn are fixed and the domains (cells) are most commonly

determined in terms of the Wigner-Seitz construction. In order to present a

simple derivation of the Multiple Scattering Theory (MST), we shall restrict

our discussion to single-cell potentials confined to spherical domains,

Vn (~r) = 0 for |~rn| ≥ Sn

(
~rn ≡ ~r − ~Rn

)
, (92)

where Sn is usually termed as the muffin-tin radius. It is important to note

that by preserving the formalism we are going to derive, MST is valid also for

space-filling potentials.
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2.2 Single-site and multi-site scattering: operator formalism

The case when only a single potential, Vn of type (91) is present, is referred to

as the single-site scattering. The corresponding single-site T-operator, tn (see

Eq. (39)),

tn = Vn + VnG0t
n , (93)

can formally be expressed as

tn = (I − VnG0)
−1 Vn . (94)

(Note that we droped the energy argument of the corresponding operators.)

Inserting Eq. (90) into Eq. (38) yields

T =
∑

n

Vn +
∑

nm

VnG0Vm +
∑

nmk

VnG0VmG0Vk + . . . =
∑

n

Qn , (95)

where we introduced the operators,

Qn = Vn +
∑

m

VnG0Vm +
∑

mk

VnG0VmG0Vk + . . .

= Vn + VnG0

∑

m

(
Vm +

∑

k

VmG0Vk + . . .

)

= Vn + VnG0

∑

m

Qm . (96)

Separating the term n on the right-hand side of Eq. (96) and taking it to the

left-hand side, we get

(I − VnG0)Qn = Vn + VnG0

∑

m(6=n)

Qm , (97)

which, by using Eq. (94), can be transformed to

Qn = tn + tnG0

∑

m(6=n)

Qm . (98)
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The above Dyson-equation can be solved by successive iterations resulting in

Qn = tn +
∑

m(6=n)

tnG0t
m +

∑

m(6=n)

∑

k(6=m)

tnG0t
mG0t

k+

∑

m(6=n)

∑

k(6=m)

∑

j(6=k)

tnG0t
mG0t

kG0t
j + . . . , (99)

therefore,

T =
∑

n

tn +
∑

n,m

tnG0 (1− δnm) tm +
∑

n,m,k

tnG0 (1− δnm) tmG0 (1− δmk) tk

+
∑

n,m,k,j

tnG0 (1− δnm) tmG0 (1− δmk) tkG0 (1− δkj) tj + . . . . (100)

The operator comprising all the scattering events between two particular sites

is called the scattering path operator (SPO),

τnm = tnδnm + tnG0 (1− δnm) tm +
∑

k

tnG0 (1− δnk) tkG0 (1− δkm) tk

+
∑

k,j

tnG0 (1− δnk) tkG0 (1− δkj) tjG0 (1− δjm) tm + . . . . (101)

Obviously,

T =
∑

nm

τnm (102)

and the following Dyson equations apply,

τnm = tnδnm +
∑

k

tnG0 (1− δnk) τ km , (103)

or

τnm = tnδnm +
∑

k

τnkG0 (1− δkm) tm . (104)
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Inserting (102) into Eq. (37) yields

G = G0 +
∑

nm

G0τ
nmG0 , (105)

which will be our starting point to evaluate the configurational space Green

function.

It is useful to introduce also the structural resolvent operator as

Gnm = G0 (1− δnm) +
∑

k,j

G0 (1− δnk) τ kjG0 (1− δjm) . (106)

The SPO, τnm, is obviously related to Gnm by (see Eq. (101)

τnm = tnδnm + tnGnmtm . (107)

Comparing expressions (103) and (104) with (107), the following useful identi-

ties can be derived,
∑

k

G0 (1− δnk) τ km = Gnmtm , (108)

and
∑

k

τnkG0 (1− δkm) = tnGnm . (109)
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2.3 The angular momentum representation

The spherical harmonics, YL (r̂), where L ∈ N stands for the composite index

(`,m), satisfy the orthogonality and completeness relations,∫
d2r̂ YL (r̂)∗ YL′ (r̂) = δLL′ , (110)

and
∑

L

YL (r̂)YL′ (r̂
′)∗ = δ (r̂ − r̂′) ≡ 1

sinϑ
δ (ϑ− ϑ′) δ (φ− φ′) , (111)

respectively. Note also the identity,

∑̀

m=−`
YL (r̂)∗ YL (r̂′) =

∑̀

m=−`
YL (r̂)YL (r̂′)∗ . (112)

The well-known solutions of the Schrödinger equation for free particles are

jL (ε;~r) ≡ j` (pr)YL (r̂)

nL (ε;~r) ≡ n` (pr)YL (r̂)

h±L (ε;~r) ≡ h±` (pr)YL (r̂)

(
p =
√
ε
)
, (113)

where j` (x), n` (x) and h±` (x) = j` (x)± i n` (x) are the spherical Bessel, Neu-

mann and Hankel-functions, respectively.

An orthonormal, complete set of basisfunctions is formed by

ϕL (ε;~r) =
ε1/4

π1/2
jL (ε;~r) (ε > 0, L ∈ N) , (114)

since, ∫
d3r ϕL (ε;~r)∗ ϕL′ (ε

′;~r) = δLL′ δ (ε− ε′) (115)

and ∫ ∞

0

dε
∑

L

ϕL (ε;~r)ϕL (ε;~r′)∗ = δ (~r − ~r′) . (116)

Using the spectral resolution of the resolvent the Green function of free particles

can then be written as

G0 (z;~r, ~r′) =

∫ ∞

0

dε
∑

L

√
ε

π

jL (ε;~r) jL (ε;~r′)∗

z − ε . (117)
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2.4 One-center expansion of the free-particle Green function

In terms of contour integrations, it can be shown that by choosing p =
√
z such

that Im p > 0,

G0 (z;~r, ~r′) = −ip
∑

L

j` (pr<) h+
` (pr>)YL(r̂)YL(r̂′)∗ , (118)

where r< = min (r, r′) and r> = max (r, r′).

Introducing the functions with complex energy arguments,

fL (z;~r) ≡ f` (pr)YL(r̂)
(
f` = j`, n` or h

±
` , p2 = z, Im p > 0

)
(119)

with the corresponding ’conjugation’

fL (z;~r)× ≡ f` (pr)YL(r̂)∗ , (120)

Eq. (118) can simply be written as

G0 (z;~r, ~r′) = −ip
∑

L

jL (z;~r<) h+
L (z;~r>)× = −ip

∑

L

h+
L (z;~r>) jL (z;~r<)× ,

(121)

called the one-center expansion of the free-particle Green function.

For later purposes it is useful to introduce a vector notation for the functions

fL (z;~r) ,

f (z;~r) ≡
[
f1 (z;~r) , f2 (z;~r) , f3 (z;~r) , · · ·

]
, (122)

and the respective adjungate vector,

f (z;~r)× ≡




f1 (z;~r)×

f2 (z;~r)×

f3 (z;~r)×

...


 . (123)

Eq. (121) can then be compactly written as

G0 (z;~r, ~r′) = −ip j (z;~r<) h+ (z;~r>)× = −ip h+ (z;~r>) j (z;~r<)× . (124)
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2.5 Single-site scattering

Let us first note that, according to Eqs. (38) and (91), tn (z) is zero outside Ωn,

tn (z;~r, ~r′) = 0 for |~rn| ≥ Sn or |~r′n| ≥ Sn . (125)

Because of traditional reasons, in the Lippmann-Schwinger equation the func-

tions jL (ε;~r) , rather than those in Eq. (114), are considered as eigenfunctions

of the free-particle Hamiltonian H0,

Rn
L (ε;~rn) =

jL (ε;~rn) +

∫

|~xn|≤Sn
d3xn

∫

|~yn|≤Sn
d3ynG0 (ε;~rn, ~xn) t

n (ε; ~xn, ~yn) jL (ε; ~yn) ,

(126)

where we shifted the origin of our coordinate system to ~Rn. For |~rn| > Sn the

one-center expansion of the free-particle Green function, Eq. (121) can be used

to yield

Rn
L (ε;~rn) = jL (ε;~rn)− ip

∑

L′

h+
L′ (ε;~rn) tnL′L (ε) , (127)

where the matrixelements of tn (ε) (single-site t-matrix) are defined as

tnL′L (ε) =

∫

|~xn|≤Sn
d3xn

∫

|~yn|≤Sn
d3yn jL′ (ε; ~xn)

× tn (ε; ~xn, ~yn) jL (ε; ~yn) . (128)

By using the shorthand notations (122) and (123), the t-matrix,

tn (ε) ≡ {tnL′L (ε)} , (129)

can be expressed as

tn (ε) =

∫

|~xn|≤Sn
d3xn

∫

|~yn|≤Sn
d3yn j (ε; ~xn)

× tn (ε; ~xn, ~yn) j (ε; ~yn) (130)

and the normalization (127) as

Rn (ε;~rn) = j (ε;~rn)− ip h+ (ε;~rn) t
n (ε) (|~rn| > Sn) . (131)
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Note that the functions Rn
L (ε;~rn) are regular at the origin (~rn = 0). Frequently,

a different kind of regular scattering wavefunctions,

Zn (ε;~rn) = Rn (ε;~rn) tn (ε)−1 , (132)

are used, which for |~rn| > Sn are normalized as

Zn (ε;~rn) = j (ε;~rn) t
n (ε)−1 − ip h+ (ε;~rn)

= j (ε;~rn)
(
tn (ε)−1 − ipI

)
+ p n (ε;~rn) . (133)

Because of the definition (128) the optical theorem, Eq. (68), takes the form,

tn (ε)−1 −
[
tn (ε)†

]−1

= 2ipI , (134)

implying that the reactance matrix,

Kn (ε) =
(
tn (ε)−1 − ipI

)−1

(135)

is Hermitean. Clearly, Eq. (133) can be written as

Zn (ε;~rn) = j (ε;~rn) K
n (ε)−1 + p n (ε;~rn) . (136)

As we shall see, in the explicit expression of the Green function, scattering

solutions that are irregular at the origin and normalized for |~rn| > Sn as

Hn (ε;~rn) = −ip h+ (ε;~rn) (137)

or

Jn (ε;~rn) = j (ε;~rn) , (138)

occur. From the boundary conditions, Eqs. (131) and (137), it is straightfor-

ward to show that

Jn (ε;~rn) = Rn (ε;~rn)− Hn (ε;~rn) t
n (ε) . (139)
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From Eq. (135) the inverse of the t-matrix can be expressed as

tn (ε)−1 = Kn (ε)−1 + ipI , (140)

which has to be inserted into Eq. (74),

Sn (ε) =
[
tn (ε)†

]−1

tn (ε)

=
(
Kn (ε)−1 − ipI

)(
Kn (ε)−1 + ipI

)−1

= (I − ipKn (ε)) (I + ipKn (ε))−1 . (141)

From the above equation it is obvious that, since Kn (ε) is a Hermitean matrix,

Sn (ε) is unitary as stated in Section 1.7.

For a spherical potential, the t-matrix is diagonal, therefore, (see also Eq. (77))

tnL′L (ε) = δLL′ t
n
` (ε) , (142)

where

tn` (ε) = −1

p
eiδ

n
` (ε) sin δn` (ε) , (143)

with δn` (ε) the `-like partial phaseshifts and the reactance matrixelement,

Kn
` (ε) = −1

p
tan δn` (ε) , (144)

is indeed real. By matching the regular solution at the muffin tin radius the

familiar text-book formula

tan δn` (ε) =
Ln` (ε) jn` (pSn)− pj′n` (pSn)

Ln` (ε) nn` (pSn)− pn′n` (pSn)
, (145)

with Ln` (ε) = d
dr lnϕn` (ε; r) |r=Sn, can be obtained.
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2.6 Two-center expansion of the free-particle Green function

In order to define matrixelements of the SPO, Eq. (101), and the structural re-

solvent, Eq. (106), an expansion of the free-particle Green function, G0 (ε;~r, ~r′)

in terms of the spherical Bessel functions centered around two different sites is

needed, i.e., for

n 6= m and |~rn| < Sn, |~rm| < Sm , (146)

G0

(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
=
∑

LL′

jL (ε;~rn)G
nm
0,LL′ (ε) jL′ (ε;~r

′
m)
×
, (147)

or

G0

(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
= j (ε;~rn)Gnm

0 (ε) j (ε;~r′m)
×
, (148)

where the expansion coefficients

Gnm
0 (ε) =

{
Gnm

0,LL′ (ε)
}

(149)

are referred to as the real-space, free (or bare) structure constants.

The explicit expression for Gnm
0,LL′ (ε) reads,

Gnm
0,LL′ (ε) = −4πpi

∑

L′L′′

i`−`
′−`′′ h+

L′′(ε;
~Rnm)CL′

LL′′ , (150)

with the Gaunt coefficients,

CL′′
LL′ =

∫
d2k YL(k̂)∗YL′(k̂)∗YL′′(k̂) =

∫
d2k YL(k̂)YL′(k̂)YL′′(k̂)∗ . (151)

Let us summarize the one- and the two-center expansion for the free-particle

Green function as follows,

G0

(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
= (152)

= δnm j (ε;~r<) (−ip) h+ (ε;~r>)× + (1− δnm) j (ε;~rn)Gnm
0 (ε) j (ε;~r′m)

×
.
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2.7 Multi-site scattering

Matrices in site-angular momentum representation

Substituting Eq. (152) into Eq. (106) and performing the necessary integrations

we obtain

Gnm
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
= j (ε;~rn)Gnm (ε) j (ε;~r′m)

×
, (153)

where we introduced the structural Green function matrix ,

Gnm (ε) = Gnm
0 (ε) (1− δnm) +

∑

k(6=n)

∑

j(6=m)

Gnk
0 (ε) τ kj (ε) Gjm

0 (ε) , (154)

and the matrix of the SPO,

τ kj (ε) =

∫

|~xk|≤Sk
d3xk

∫

|~yj |≤Sj
d3yj j (ε; ~xk)

× τ kj (ε; ~xk, ~yj) j (ε; ~yj) . (155)

Note that the SPO, τ kj
(
ε; ~xk + ~Rk, ~yj + ~Rj

)
, is zero for |~xk| > Sk or |~yj| > Sj.

It is straightforward to show that the operator equations (101), (103), (104)

and (107) imply the matrix equations,

τnm (ε) = δnmt
n (ε) + tn (ε) Gnm

0 (ε) (1− δnm) tm (ε) (156)

+
∑

k

tn (ε) Gnk
0 (ε) (1− δnk) tk (ε)Gkm

0 (ε) (1− δkm) tm (ε) + . . . ,

τnm (ε) = δnmt
n (ε) +

∑

k

tn (ε) Gnk
0 (ε) (1− δnk) τ km (ε) , (157)

τnm (ε) = δnmt
n (ε) +

∑

k

τnk (ε) Gkm
0 (ε) (1− δkm) tm (ε) , (158)

and

τnm (ε) = δnmt
n (ε) + tn (ε) Gnm (ε) tm (ε) . (159)
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It is very useful to introduce the matrices in site-angular momentum represen-

tation,

t (ε) = {tn (ε) δnm} = {tnLL′ (ε) δnm} , (160)

G0 (ε) = {Gnm
0 (ε) (1− δnm)} =

{
Gnm

0,LL′ (ε) (1− δnm)
}
, (161)

τ (ε) = {τnm (ε)} = {τnmLL′ (ε)} , (162)

and

G (ε) = {Gnm (ε)} = {Gnm
LL′ (ε)} , (163)

since Eqs. (154), as well as (156-159) can be rewritten as

G (ε) = G0 (ε) + G0 (ε) τ (ε) G0 (ε) , (164)

τ (ε) = t (ε) + t (ε) G0 (ε) t (ε) + t (ε) G0 (ε) t (ε) G0 (ε) t (ε) + . . . , (165)

τ (ε) = t (ε) + t (ε) G0 (ε) τ (ε) , (166)

τ (ε) = t (ε) + τ (ε) G0 (ε) t (ε) , (167)

and

τ (ε) = t (ε) + t (ε) G (ε) t (ε) , (168)

respectively. In particular, the Dyson equation (166) or (167) can be solved in

terms of the following matrix inversion,

τ (ε) =
(
t (ε)−1 −G0 (ε)

)−1

. (169)

By comparing Eqs. (165) and (168) we find,

G (ε) = G0 (ε) + G0 (ε) t (ε) G0 (ε)

+ G0 (ε) t (ε) G0 (ε) t (ε) G0 (ε) + . . .

= G0 (ε) + G (ε) t (ε) G0 (ε) , (170)

from which the equation,

G (ε) = G0 (ε) (I− t (ε) G0 (ε))−1 (171)

can be obtained. Eqs. (169) and (171) are called the fundamental equations of

the Multiple Scattering Theory.
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Evaluation of the Green function

In this section it will be shown that the Green function, G
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
,

appears to have the form,

G
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
=

= Rn (ε;~rn) Gnm (ε) Rm (ε;~r′m)
×

+ δnm Rn (ε;~r<) Hn (ε;~r>)× , (172)

with r< = min (rn, r
′
n) , r> = max (rn, r

′
n) and the scattering solutions, Rn (ε;~rn)

and Hn (ε;~rn), as normalized according to Eqs. (131) and (137), respectively.

For a particular pair of sites, n and m, we split the operator expression (105)

as

G (ε) = G(nm) (ε) + G(n̄m) (ε) + G(nm̄) (ε) + G(n̄m̄) (ε) , (173)

where (see also Eqs. (106-109)

G(nm) (ε) = G0 (ε) τnm (ε) G0 (ε)

= δnmG0 (ε) tn (ε) G0 (ε) + G0 (ε) tn (ε) Gnm (ε) tm (ε) G0 (ε) , (174)

G(n̄m) (ε) =
∑

i(6=n)

G0 (ε) τ im (ε) G0 (ε) = Gnm (ε) tm (ε) G0 (ε) , (175)

G(nm̄) (ε) =
∑

j(6=m)

G0 (ε) τnj (ε) G0 (ε) = G0 (ε) tn (ε) Gnm (ε) , (176)

G(n̄m̄) (ε) =
∑

i(6=n)

∑

j(6=m)

G0 (ε) τ ij (ε) G0 (ε)+G0 (ε) = Gnm (ε)+ δnmG0 (ε) . (177)

First, for the case of |~rn| > Sn, |~r′m| > Sm, we evaluate the configurational

space representation of the above operators. By making use of the expressions

(152) as well as (153), the corresponding integrations can easily be performed

yielding,
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G(nm)
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
= δnm (−ip)2 h+ (ε;~rn) tn (ε) h+ (ε;~r′n)

×

+ (−ip)2 h+ (ε;~rn) tn (ε)Gnm (ε) tm (ε) h+ (ε;~r′m)
×
, (178)

G(n̄m)
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
= (−ip) j (ε;~rn)Gnm (ε) tm (ε) h+ (ε;~r′m)

×
,

(179)

G(nm̄)
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
= (−ip) h+ (ε;~rn) t

n (ε)Gnm (ε) j (ε;~r′m)
×
, (180)

G(n̄m̄)
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
= j (ε;~rn)Gnmε j (ε;~r′m)

×
(181)

+ δnm

(
j (ε;~rn) (−ip) h+ (ε;~r′n)

×
Θ (r′n − rn)

+ (−ip) h+ (ε;~rn) j (ε;~r′n)
×

Θ (rn − r′n)
)
.

After adding all the contributions, we find

G
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
= (182)

=
[
j (ε;~rn)− ip h+ (ε;~rn) tn (ε)

]
Gnm (ε)

[
j (ε;~r′m)− ip tm (ε) h+ (ε;~r′m)

]×

+ δnm

([
j (ε;~rn)− ip h+ (ε;~rn) tn (ε)

]
(−ip) h+ (ε;~r′n)

×
Θ (r′n − rn)

+ (−ip) h+ (ε;~rn)
[
j (ε;~r′n)− ip tn (ε) h+ (ε;~r′n)

]×
Θ (rn − r′n)

)
.

For real potentials, V (in fact, for time-reversal invariant Hamiltonians), tn (ε)

turns to be symmetric. Note that this is still valid if an effective (exchange)

field, interacting only with the spin of the system, is present. Moreover, making

use of the definition of the t-matrix, Eq. (128) and the identity (112), it is easy

to prove that

h+ (ε;~rn) tn (ε) h+ (ε;~r′n)
×

= h+ (ε;~r′n) tn (ε) h+ (ε;~rn)× , (183)
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such that we arrive at

G
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
=

[
j (ε;~rn)− ip h+ (ε;~rn) tn (ε)

]
Gnm (ε)

[
j (ε;~r′m)− ip h+ (ε;~r′m) tm (ε)

]×

+ δnm
[
j (ε;~r<)− ip h+ (ε;~r<) tn (ε)

]
(−ip) h+ (ε;~r>)× . (184)

Obviously, outside the muffin-tin region, the Green function exhibits the form

of (172). Since, however, the Green function satisfies the equation,

(−∆ + V (~r)− ε)G (ε;~r, ~r′) = δ (~r − ~r′) , (185)

in all space, it can readily been continued inside the muffin-tins by keeping the

functions Rn (ε;~rn) and Hn (ε;~rn) solutions of the Schrödinger equation related

to the muffin-tin indexed by n.

An alternative expression of the Green function can be obtained when we replace

the regular scattering solutions Rn (ε;~rn) by Zn (ε;~rn) (see Eq. (132)) in Eq.

(172). Namely,

Rn (ε;~rn) G
nm (ε) Rm (ε;~rm)× =

= Zn (ε;~rn) tn (ε) Gnm (ε) tn (ε) Zm (ε;~r′m)
×

= Zn (ε;~rn) τnm (ε) Zm (ε;~rm)× − δnm Zn (ε;~rn) t
n (ε) Zn (ε;~r′n)

×
,

where we exploited Eq. (159), and

Rn (ε;~r<) Hn (ε;~r>)× = Zn (ε;~r<) tn (ε) Hn (ε;~r>)× . (186)

Adding the above two expressions and utilizing Eqs. (132) and (139) we obtain

G
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
=

= Zn (ε;~rn) τ
nm (ε) Zm (ε;~r′m)

× − δnm Zn (ε;~r<) Jn (ε;~r>)× . (187)
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In case of δ → 0 it can be shown that,

ImG+
(
ε;~rn + ~Rn, ~rn + ~Rn

)
= Zn (ε;~rn) Im τnn (ε) Zn (ε;~rn)× , (188)

where

Im τnn (ε) =
1

2i

(
τnn (ε)− τnn (ε)+) . (189)

Namely,

G
(
ε+ i0;~rn + ~Rn, ~rn + ~Rn

)
= Zn (ε+ i0;~rn) τnn (ε+ i0) Zn (ε+ i0;~rn)×

− Zn (ε+ i0;~rn) Jn (ε+ i0;~rn)
× , (190)

and

G
(
ε+ i0;~rn + ~Rn, ~rn + ~Rn

)∗
= Zn (ε− i0;~rn) τ

nn (ε− i0) Zn (ε− i0;~rn)×

− Zn (ε− i0;~rn) Jn (ε− i0;~rn)× , (191)

Kn (ε+ i0) = Kn (ε− i0) ⇒ Zn (ε+ i0;~rn) = Zn (ε− i0;~rn) ,

Jn (ε+ i0;~rn) =Jn (ε− i0;~rn), therefore,

G
(
ε+ i0;~rn + ~Rn, ~rn + ~Rn

)
−G

(
ε+ i0;~rn + ~Rn, ~rn + ~Rn

)∗
=

Zn (ε+ i0;~rn) [τnn (ε+ i0)− τnn (ε− i0)] Zn (ε+ i0;~rn)× , (192)

which immediately leads to Eq. (188).

Let us, finally, write the Green functions (172) and (187) by explicitly indicating

the summations with respect to the angular momentum indices,

G
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
= (193)

=
∑

LL′

Rn
L (ε;~rn) G

nm
LL′ (ε) R

m
L′ (ε;~r

′
m)
×

+ δnm
∑

L

Rn
L (ε;~r<) Hn

L (ε;~r>)× ,

and

G
(
ε;~rn + ~Rn, ~r

′
m + ~Rm

)
= (194)

=
∑

LL′

Zn
L (ε;~rn) τnmLL′ (ε) Z

m
L′ (ε;~r

′
m)
× − δnm

∑

L

Zn
L (ε;~r<) JnL (ε;~r>)× .
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2.8 Density of states, charge density, dispersion relation

In this section we give some expressions for quantities to be usually computed

in electronic structure calculations of solids. The density of states defined in

Eq. (29) can be written as

n (ε) = −1

π

∫
d3r ImG+ (ε;~r, ~r)

= −1

π

∑

i

∫

Ωi

d3ri ImG+
(
ε;~ri + ~Ri, ~ri + ~Ri

)
, (195)

therefore, the local DOS (LDOS), referenced to individual cells, can

straightforwardly be defined as

ni (ε) = −1

π

∫

Ωi

d3ri ImG+
(
ε;~ri + ~Ri, ~ri + ~Ri

)
, (196)

such that

n (ε) =
∑

i

ni (ε) . (197)

Inserting expression (188) into Eq. (196) yields

ni (ε) = −1

π

∫

Ωi

d3ri Zi (ε;~ri) Im τ ii (ε) Zi (ε;~ri)
×

= −1

π
tr
(
F i (ε) Im τ ii (ε)

)
, (198)

where now the trace has to be taken in angular momentum space and the matrix

comprising the integrals of the scattering solutions, F i (ε) is defined as

F i (ε) =

∫

Ωi

d3ri Zi (ε;~ri)
× Zi (ε;~ri) , (199)

or

F i
LL′ (ε) =

∫

Ωi

d3ri Z
i
L (ε;~ri)

× Z i
L′ (ε;~ri) . (200)

34



The case of spherical integration domains, i.e., the atomic sphere approximation

(ASA)

Expanding the scattering solutions in terms of the spherical harmonics,

Z i
L (ε;~ri) =

∑

L′

YL′ (r̂i) Z
i
L′L (ε; ri) , (201)

Eq. (200) can be evaluated as follows,

F i
LL′ (ε) =

∑

L′′,L′′′

∫

Ωi

d3ri Z
i
LL′′ (ε; ri)YL′′ (r̂i)

∗ Z i
L′L′′′ (ε; ri)YL′′′ (r̂i)

=
∑

L′′,L′′′

(∫ SASAi

0

r2
i dri Z

i
LL′′ (ε; ri)Z

i
L′L′′′ (ε; ri)

)∫
d2r̂iYL′′ (r̂i)

∗ YL′′′ (r̂i)
︸ ︷︷ ︸

δL′′L′′

=
∑

L′′

∫ SASAi

0

r2
i dri Z

i
LL′′ (ε; ri)Z

i
L′L′′ (ε; ri) . (202)

In the diagonal (spherical symmetric) case this further reduces to

F i
LL′ (ε) = δLL′

∫ SASAi

0

r2
i dri Z

i
` (ε; ri)

2

︸ ︷︷ ︸
F i` (ε)

, (203)

and the LDOS can be determined by the simple expression,

ni (ε) = −1

π

∑

`

F i
` (ε)

∑̀

m=−`
Im τ ii`m,`m (ε) . (204)

Quite naturally, the partial local DOS, ni` (ε), can also be defined as

ni` (ε) = −1

π
F i
` (ε)

∑̀

m=−`
Im τ ii`m,`m (ε) , (205)

such that

ni (ε) =
∑

`

ni` (ε) . (206)
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The charge (or particle) density,

ρ (~r) = −1

π

∫ εF

−∞
dε ImG+ (ε;~r, ~r) , (207)

plays an essential role in electronic structure calculations based on the Density

Functional Theory. Here we are restricted to T = 0, and the Fermi energy is

denoted by εF . Similar to the DOS, the charge density can also be decomposed

into local components,

ρ (~r) =
∑

i

ρi (~ri) , (208)

where

ρi (~ri) = −1

π

∑

LL′

∫ εF

−∞
dεZ i

L (ε;~ri)
[
Im τ ii (ε)

]
LL′

Z i
L′ (ε;~ri)

× , (209)

which for spherically symmetric potentials reduces to

ρi (~ri) = −1

π

∑

LL′

∫ εF

−∞
dεZ i

` (ε; ri) Z
i
`′ (ε; ri) Im τ iiLL′ (ε) YL (r̂i)YL′ (r̂i)

∗ . (210)

Using the expansion for the product of spherical harmonics,

YL (r̂i)YL′ (r̂i)
∗ =

∑

L′′

CL
L′L′′ YL′′ (r̂i) , (211)

CL
L′L′′ being the Gaunt coefficients as defined in Eq. (151), the local charge

density can be decomposed into multipole components,

ρi (~ri) =
∑

L

ρiL (ri)YL (r̂i) , (212)

where

ρiL (ri) = −1

π

∑

L′L′′

CL′
LL′′

∫ εF

−∞
dεZ i

`′ (ε; ri) Z
i
`′′ (ε; ri) Im τ iiL′L′′ (ε) . (213)
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In case of three-dimensional translation symmetry (for brevity, let us discuss

the case of a simple lattice only), the structure constants can be evaluated in

terms of lattice Fourier transformation,

Gnn′
0 (ε) =

1

ΩBZ

∫

BZ

d3k G0

(
ε;~k
)
ei
~k(~Rn−~Rn′) , (214)

where BZ denotes the Brillouin zone of volume ΩBZ and the reciprocal space

structure constants,

G0

(
ε;~k
)

=
∑

~Rn

Gn0
0 (ε) e−i

~k ~Rn , (215)

can directly be calculated in terms of the so-called Ewald summation for slowly

converging series. It is straightforward to show that the lattice Fourier trans-

form of the SPO-matrix,

τ
(
ε;~k
)

=
∑

~Rn

τn0 (ε) e−i
~k ~Rn , (216)

can be calculated as

τ
(
ε;~k
)

=
[
t (ε)−1 −G0

(
ε;~k
)]−1

, (217)

where t (ε) is the single-site t-matrix of the cells being now uniform for the

entire system. The site-diagonal part of the SPO-matrix,

τ 00 (ε) =
1

ΩBZ

∫

BZ

d3k τ
(
ε;~k
)
, (218)

which enters the local DOS,

n (ε) = −1

π

∑

L

F` (ε) Im τ 00
LL (ε) , (219)

has poles at the eigenvalues of the Hamiltonian of the system, εα(~k), where α

labels the bands. From Eq. (217) it is obvious that these poles can be found

by the condition,
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det
(
t (ε)−1 −G0

(
ε;~k
))

= 0 , (220)

referred to as the KKR-equation which determines the dispersion relation in the

bulk case. It should be noted that Eq. (220) represents a formally exact tool for

searching the spectrum of a 3D translational invariant (effective) one-electron

system. The ‘penalty’ one has to pay for this exactness is the non-linearity

of Eq. (220), i.e., εα(~k) can not be determined from a simple (generalized)

eigenvalue problem of a Hamiltonian matrix as in the case of linearized band

structure methods. A useful visualization of the dispersion relation can be

obtained by decomposing the DOS into k-dependent contributions,

n (ε) =
1

ΩBZ

∫

BZ

d3k A(ε;~k) , (221)

where the quantity,

A(ε;~k) = −1

π

∑

L

F` (ε) Im τ 00
LL

(
ε;~k
)
, (222)

called the Bloch spectral function, has δ-like sharp peaks at ε = εα(~k). Obvi-

ously, a constant-energy surface in the Brillouin zone, in particular, the Fermi

surface can be constructed by connecting the peak positions of A(ε;~k) for the

given energy, ε.
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3 Generalization of multiple scattering theory

Referring to section 1.4, in the final section of this course we show how an

arbitrary reference system can be used within the KKR Green function method.

There are essentially two practical ways for doing this, depending on which of

the fundamental equations, Eq. (169) or (171), is considered as starting point.

It should be noted that both techniques are restricted to the case when the

scatterers in the different systems are of the same geometrical arrangements,

i.e., the position vectors ~Ri are not changed. In order to handle structural

relaxations, different techniques have to be used, the discussion of which extends

the scope of this course.

3.1 The embedding technique

We start with Eq. (169) which for the system of interest (marked by index s)

and the reference system (r) reads as

τ s (ε) =
(
ts (ε)−1 −G0 (ε)

)−1

, (223)

and

τ r (ε) =
(
tr (ε)−1 −G0 (ε)

)−1

, (224)

respectively. Performing simple algebraic manipulations,

τ s (ε) =
(
tr (ε)−1 −∆t (ε)−1 −G0 (ε)

)−1

=

(
I−∆t (ε)−1

(
tr (ε)−1 −G0 (ε)

)−1 (
tr (ε)−1 −G0 (ε)

))−1

, (225)

where

∆t (ε)−1 = tr (ε)−1 − ts (ε)−1 , (226)

it is straightforward to express τ s (ε) in terms of τ r (ε),
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τ s (ε) = τ r (ε)
(
I−∆t (ε)−1 τ r (ε)

)−1

. (227)

Therefore, once the t-matrices, tr (ε) and ts (ε), as well as the SPO matrix of

the reference system, τ r (ε), are known, the SPO matrix, τ s (ε) can directly be

calculated based on Eq. (227) and then the Green function of the system can

be obtained from Eq. (194).

A particularly important application of the embedding technique refers to the

case when only a finite number (say, a cluster) of scatterers differ from each

other in the two systems, labelled by s and r. In this case, namely,

∆ti (ε)
−1 =




tri (ε)−1 − tsi (ε)−1 if i ∈ C

0 if i /∈ C
, (228)

where C denotes the set of indices of the sites in the cluster. Rewriting formally

Eq. (227),

τ s (ε) = τ r (ε) + τ r (ε) ∆t (ε)−1 τ r (ε)

+ τ r (ε) ∆t (ε)−1 τ r (ε) ∆t (ε)−1 τ r (ε) + . . . , (229)

it is easy to express the projection of τ s (ε) onto the cluster, τ sC (ε),

[τ sC (ε)]ij = τ s,ij (ε) for i, j ∈ C , (230)

as

τ sC (ε) = τ rC (ε) + τ rC (ε) ∆tC (ε)−1 τ rC (ε)

+ τ rC (ε) ∆tC (ε)−1 τ rC (ε) ∆tC (ε)−1 τ rC (ε) + . . . , (231)

where τ rC (ε) is the corresponding projection of the SPO matrix of the refer-

ence system and ∆tC (ε)−1 comprises the nonvanishing ∆t−1
i matrices (see Eq.

(228)). Eq. (231) can then be written in a form similar to (227),
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τ sC (ε) = τ rC (ε)
(
I−∆tC (ε)−1 τ rC (ε)

)−1

, (232)

with the obvious difference that now one has to deal with matrices of dimension

of N × (`max + 1)2, where N denotes the number of sites in the cluster and `max

is the angular momentum cut-off in the calculations. Specifically, for a single

impurity at site i the above equation reduces to

τ s,ii (ε) = τ r,ii (ε)
(
I −∆ti (ε)−1 τ r,ii (ε)

)−1

. (233)

Within the single-site coherent potential approximation for randomly disordered

substitutional alloys, the reference system is associated with the (translational

invariant) effective medium in which a particular constituent of the alloy (la-

belled by α) is immersed via

τα,00 (ε) = τ c,00 (ε)
(
I −∆tα (ε)−1 τ c,00 (ε)

)−1

. (234)

Without going into details, the condition for self-consistently determining the

t-matrix of the effective system, tc (ε), reads

τ c,00 (ε) =
∑

α

cατ
α,00 (ε) , (235)

where cα is the concentration of component α (
∑

α cα = 1), while τ c,00 (ε) is

calculated by using Eqs. (217) and (218) when replacing t (ε) by tc (ε) .
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3.2 The Screened Korringa-Kohn-Rostoker method

In principal, an equivalent technique can be developed by focusing on the struc-

tural Green function matrix of the system (see Eq. (171)),

Gs (ε) = G0 (ε) (I− ts (ε) G0 (ε))−1 , (236)

which by splitting the t-matrix into two parts,

ts (ε) = tr (ε) + ∆t (ε) , (237)

with

∆t (ε) = ts (ε)− tr (ε) , (238)

can be related to the structural Green function matrix of the reference system,

Gr (ε) = G0 (ε) (I− tr (ε) G0 (ε))−1 , (239)

as follows,

Gs (ε) = G0 (ε) (I− tr (ε) G0 (ε) −∆t (ε) G0 (ε))−1

= G0 (ε)
([

I−∆t (ε) G0 (ε) (I− tr (ε) G0 (ε))−1
]

(I− tr (ε) G0 (ε))
)−1

= G0 (ε) (I− tr (ε) G0 (ε))−1
(
I−∆t (ε) G0 (ε) (I− tr (ε) G0 (ε))−1

)−1

⇓

Gs (ε) = Gr (ε) (I−∆t (ε) Gr (ε))−1 . (240)

The equivalence of Eqs. (227) and (240) can be proved directly!

Within the Screened Korringa-Kohn-Rostoker method, a reference system is

used to obtain Gr,ij (ε) localized in real space. Obviously, a system formed

by a uniform distribution of constant repulsive potentials (typically, Vr=2-3
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Ryd) meets the above request, since the valence band of typical metals lies

below Vr, thereby, no states of the reference system can be found in this region.

This implies that, similar to G0 (ε;~r, ~r′) for negative energies (see Eq. (23)),

the Green function of the reference system exponentially decays in real space.

For that reason, the matrices Gr,ij (ε) are referred to as the screened structure

constants, used to define the SPO in the screened representation,

τ s(r) (ε) =
(

[∆t (ε)]−1 −Gr (ε)
)−1

. (241)

Obviously, once a real-space cut-off for Gr,ij (ε) is used,

Gr,ij (ε) ' 0 for |~Rij| > D , (242)

sparse matrix techniques can be used to solve Eq. (241). Such a method has

been developed to treat surfaces and interfaces of solids, where the transla-

tional invariance is broken normal to the planes and, therefore, a lattice Fourier

transform does not apply with respect to this direction. The screened SPO is

obviously related to the structural Green function matrix of the system by

τ s(r) (ε) = ∆t (ε) + ∆t (ε) Gs (ε) ∆t (ε) , (243)

and a similar expression holds for the physical representation of the SPO,

τ s (ε) = ts (ε) + ts (ε) Gs (ε) ts (ε) , (244)

Thus the transformation of the SPO from the screened to the physical presen-

tation can be written as

τ s (ε) = ts (ε) [∆t (ε)]−1 τ s(r) (ε) [∆t (ε)]−1 ts (ε)

− ts (ε) [∆t (ε)]−1 ts (ε) + ts (ε) , (245)

which does not imply any further numerical complication since the transforma-

tion is site-diagonal.
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