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1 Linear response theory

1.1 Linear response and the Green function

Suppose the Hamilton operator of the system can be decomposed into the Hamilton operator
of an unperturbed system, Hy and the operator related to an, in general, time-dependent
perturbation, H' () :

H(t)=Hy+ H'(t) . (1)

Using grand-canonical ensemble, the density operator of the unperturbed system can be written

as

Qo = %GXP (—5H0) ) (2)

with 3 = 1/kgT, T the temperature, kg the Boltzmann constant, and
Ho = Hy — uN (3)
where p is the chemical potential, N is the total (particle) number operator, and
Z =Tr (exp (—fHo))

Within the Schrédinger picture the equation of motion for the density operator reads as

2 — ), 0(0) ()
where
M) = H (1)~ N o)

Clearly, in absence of the perturbation, ¢ (t) = go. Partitioning, therefore, o (t) as

o(t)=00+0 (1), (6)
and making use that [Hy, 0o] = 0, we get to first order in H',

dd' (1)

ih
ot

= [Ho, &' ()] +[H' (1), 00] - (7)

It is now worth to switch to the interaction (or Dirac) picture,
op (t) =00+ dp(t) , (8)

op (t) = exp (%Hot) o (t)exp (—%Hot> : (9)



since

o) N0 (L
th = [0} (t) , Ho] + exp 7—17'(015 ih TR —ﬁHot
ol ()] [ (1).00]
= [Hp (1), 00] - (10)

The solution of the above equation with the boundary condition o/, (t) L 0 can be given as
——00

do(t) =5 [t [Hp(®).0n]. (1)

thus, returning back to the Schrodinger picture, the density operator can be approximated to
first order as
i [* i i
o(t) =~ oy — P /_Oo dt’ exp (—ﬁHot) [Hp (), 00] exp (ﬁHot) . (12)
Considering the time evolution of a physical observable, say A (t), associated with a Hermitean
operator, A one gets

Alt) = Ay — % / LTy {exp (—%Hot> [HL ('), 0o] exp (%Hot) A}

— 00

—do— 1 / 4 Tr {[H) (1), 00] Ap (£)} . (13)

— 00

where Ay = Tr{0pA} and the Dirac representation of operator A,
Ap (t) = exp (%HM) Aexp <—%H0t) , (14)
is used. Applying the identity,
Tr{[A,B|C} =Tr{ABC — BAC} =Tr{BCA — BAC} =Tr{B|C, A]} ,
we get o
SAM) =3 [ Trm Ao (). 1 ()] (15)
by defining 0A (t) = A (t) — Ap. In general, the perturbation H' (t) has the form,

H' (t)=—-BF(t) (16)

where B is a Hermitean operator and F'(t) is a complex function (classical field). In that case,

Eq. (15) transforms into

SA(M) = — / dt' F (') Tr {00 [Ap (1), Bo (£)]} . (17)

—0o0



or written in terms of the retarded Green function,
Glip (t,t) = —i©(t —t') Tr{e[Ap (1), Bp ()]}, (18)

SA(t) = % / TR W) G () (19)

—0
It should be noted that since the time-evolution in the Dirac picture is governed by Hy, the
operators Ap (t) and Bp (t') are equivalent with the corresponding Heisenberg-operators related
to the unperturbed system, as most commonly used in the definition of the Green function,
Eq. (18). Supposing that the operators A and B do not explicitly depend on time, G'¢% (¢, t')

will be a function of ¢ — #’. Therefore, the Fourier coefficients of 0 A (¢) can be written as

SA (W) = 3 F () G (@) | (20)

where o
X (w) = /_ dt X (1) exp (iwt) (21)

and .
X (1) = % /_ do X (w) exp (—iwt) | (22)

for any time-dependent quantity, X (¢). Care has, however, to be taken since G'f (w) is

analytical in the upper complex semiplane (retarded sheet) only. As a consequence, for a real

argument w, the limit @ — w + 0 has to be considered! The complex admittance, yap (w)
defined as

0A (W) = F (w) xap (w) , (23)
can then be expressed as
Xan () = § G o+ 10) =1 [ dtexpli(w+0) Tr A0, BO)) . (21)

The appearance of the side-limit, w+1i0, in y 45 (w) is usually termed as the adiabatic switching

of the perturbation as it corresponds to a time-dependent classical field,

F'(t) =1lim F (t) e . (25)

s—0

1.2 The Kubo formula

Let’s come back to the expression (13),

dA(t) = ——/t dt' Tr{[Hy (t'), 0] Ax ()} , (26)



where the operators are taken in the Heisenberg picture with respect to the unperturbed system.

Kubo’s identity:

%[XH () o] = Q/OBCMXH (t —iAR) | (27)
where
_ exp(—fH) oo [ 2 o [ 1
"~ Trfen(-my 0 T ,p(th>X“) r (5)
and Xp (t):—%[XH (t),H] .
Proof:

‘N
Q/ dA Xy (f — iAR) =
0

B
=70 / dX [exp (\H) X () exp (—\H) , H]

i B
= ﬁg/o d\ % [exp ()\H) Xy (t) exp <_)‘H)]

_ %(Qexp (BH) Xy () exp (—~GH) — pAg (1))
Xu(t)e

[XH (t) ) Q] .

l

h

Employing Kubo’s identity (27) in Eq. (26) yields

5A(t):—/_t % /ﬂd)\Tr{QOH}{(t/—i)\h) Ay (1)}

:_/_t dt’ /ﬁd)\Tr{QoH’(t’) AH(t—t’+z‘Ah)} : (28)

since
Tr { 00 HYy (' — M) Ap (t)} —

_7r {QO exp (% (' — i) HO) B (#) exp (

_% (t' — i\R) Ho) An (t)}

— Ty {go B (#) exp ( (i) HO) Ap(t) exp (% (# — iNR) Ho)}

— Ty {QO H () Ap (¢ — ¢ +z’)\h)} .



2 The electric conductivity tensor

2.1 The current-current correlation function

In case of electric transport a time dependent external electric field is applied to a solid. Ob-
viously, this induces currents, which in turn creates internal electric fields. Let us assume that
the total electric field, E(F, t) is related to the perturbation through a scalar potential, ¢ (7, )
(E(Ft) ==V (1))

o) = [Ero@ors . (29)

where p (7) = e (7)" ¢ (F) is the operator of the charge density, with 1 (¥) being the field
operator and e the charge of the electron. (A derivation of the conductivity tensor is possible

_1dA(R)
c

also assuming a vectorpotential, /T(F, t), related to the electric field by E(F, t) = s

which in turn leads to an identical result as derived here.) The time-derivative of H/; (t) can

be calculated as follows,

i (1) =/d3r%mo,p<m¢<m> - —/d?’rﬁf(m 6 (7 1)
—_——

App (7,t)
ot lt=0

= / &*r J(F) Vo (7, ) = — / d*r J(F) E(F,t) (30)
with the current-density operator,

7 - B (7)F (6 - %) Y () in non-relativistic case | .

ect) (P)T a (7) in relativistic case
and the Dirac matrices, @. Note that in Eq. (30) we made use of the continuity equation and
we assumed periodic boundary conditions at the surface of the solid, therefore, when using
Gauss’ integration theorem the corresponding surface term vanished. Making use of Egs. (28)

and (30) the pth component of the current can be written as
TuFt) = / &>’ / Car 0 (7,75 0, 8) By (7, 1) (32)
where the space-time correlation function is given by
ouw(F 75t t) =0 (t—1) /ﬁ d\Tr{oo J, (7,0) J, (7, t —t' +i\k)} | (33)
0

expressing the linear response of the current at (7, ¢) in direction u to the local electric field at
(7’,t') applied in direction v. Note that in the above equation the current-density operators

are assumed to be Heisenberg operators.



As before, we look for the response of a Fourier component of the electric field,

E(Ft) = E (7,w) exp (igT — iwt) | (34)

1
27V

( / dt/ B, t) exp (— z’chJriwt))

where @w = w 440 and V is the volume of the system. While o, (7, 7";¢,t') trivially depends

on t —t' (see. Eq. (33)), in general, it is a function of independent space variables, 7 and

7. In cases, when the measured current is an average of the local current defined in (32)

over a big region (many cells) of the solids, the assumption that o, (7, 7";t,t) is homogeneous
in space, ie., 0, /(77" t —t') = 0, (7" —7';t —t'), can be made, which facilitates a direct
Fourier transformation of Eq. (32). Usually this happens when ¢ is small, that means when

long-wavelength excitations are studied. The (¢, w) component of the current per unit volume,
1 oo
Ju(qw) = V/ dt/dgr J, (7, t) exp (—iqT + iwt) (35)
can then be determined from Eqgs. (32) and (33),

J@w) = 0,u(dw) ETw) . (36)

v

with the wave-vector and frequency dependent conductivity tensor o, (¢, w)

1 [ p
ow(qiw) = V/o dt exp (z’wt)/o d\ Tr{ooJ, (—q,0) J, (¢, t +ih\)} | (37)

with
J, (q,t) = /d3r Jy (7', t) exp (—iqT) . (38)

After some algebra,

/Oﬁ AN Tr {00 Ty (=3,0) T, (4,1 +ihN)}

-/ TN LT fexp (~H0) A, (—2.0) exp (-AHa) J, (78)exp ()
= [0 T (e (00) G e (O 8) ) S (.0)

0

B
_ / d\ Tr {0 exp (8 — ) Ho) Ju (@) exp (A = B) Ho) J (=7, 0)}

0

g
_ /0 d\ Tr {00 exp (NHy) J,u (1) exp (—=AHo) J, (=7,0)}

B
:/ A\ Tr {00 J, (Gt — iBA) Jy (~,0))
0



and contour integration tricks,

I5]
L/ dX Tr {00, (3.t — BN) T, (—,0)}

0
l

t—ihs
:ﬁ/ dr Tr {00J,, (§,7) J, (—,0)}
t

B ﬁ/t dt’ Tr{oo (Ju(q,1) ], (=4,0) = Ju (¢; 1" — ihB3) J, (=4, 0))}

SN—
|
t&
—
|
ot}
o
SN—
tkc
—
2y
o,
S~—
N—
—

1 [ T @) -

:ﬁ/t dt' Tr{oo [J, (T.1'), ], (=700} .

where we assumed that the integrand is analytical, we arrive at
i

rulde) = g [t el [ at T U@ L -goy 69

Integration by part yields,

Ww/ 5 m)/t at' Tr {oo [ (4.1, (~7.0)]} =

th ({exp (iwt) /too dt' Tr{oeo [J, (7, 1), ], (—4, 0)]}}

0

+ [t exp (i) T @0 I -0} -

% ( / Tt exp (i) Tr{oo [p (@.8), ], (~7.0)])

- [t @ o)

By introducing the current-current correlation function,
1

Suld. ) = [t explit) Trian [J,(@0). 0, (-3.0)} (40

the conductivity tensor can be expressed as
- Y (@ @) = Xu(0)

O—MV(Q7 (.U) = o (41)
For a homogeneous system with carrier density, n and mass of the carriers, m,
Yuw(q,0) ne?
Tk (q ) = ne 5uy ; (42)

w mwo

i.e., the phenomenological Drude term for non-interacting particles. It is furthermore clear,
that the static, i.e., w — 0 (and ¢ — 0), limit has to be performed as

. . 2u(@=0,18) — 3, (¢=0,0
O.'wj(qzo’w:o) :Sl_lg_lo M ( )ZS [ ( )

dwo

w=0

We shall derive more specific expressions for a system of non-interacting particles.
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2.2 Kubo formula for independent particles

Skipping the quite straigthforward but lengthy derivation, we can state that formulas (37), (39)

or (40-41) apply also for a system of independent particles (fermions), when the corresponding

one-particle operators and the Fermi-Dirac distribution,

1
po = J(H) = G 11

is used. Working in the basis of eigenfuctions of Hy,
H0|TL>:En|TL>, <m|n - nma Z|n
the thermal average of the current—current commutator can be written as

Trieo [Ju (@), Ju (=G, 0)]} =

= 37 o) Fenl e (G e0 ) @27 0
with
T = (0l L (@ |m)  and 2" (=) = (m] J, (~@) n) -
Namely,
Tr{oo [, (@1), ], (~G.0))} =
= " (n F(Ho) p){p| b0 J, (g.1) e F8 ) (m |, (~q) | n)
— > (m| F(Ho)p) {plJ (=@ [n){n] et , (G, ¢) e i | m) |
and

(n| f(Ho)[p) = f(€n)dpn
4

Trieo [Ju(q:t), )y (=4 0)]} =

_ Z f ehsnt Jnm (Cj)@ Femt! Jmn (_q)

- Z Flew) Ip" (=@ et T (@) e e
Substituting Eq. (45) into Eq. (40) yields

LS [few) = Flem)] T @ T (—)

Ew(cf, W) :W

: / dt exp (l(en —em + hw)t) :
0 h

(44)

(45)



The integral on the right—hand side with respect to t is just the Laplace transform of the

& 1
dt — — — )| t)] =
/0 exp ({ s+ h(sn Em + )} ) =

_exp ([—s + %(en —Em + hw)} t)

identity,

. : 48
_s—f—%(é{n—sm—i—hw) (48)
therefore, Eq. (47) can be transformed to
= 4 €n) = J(Em nm mn
E/ﬂ/ (CI7 W)= > M ‘]u (@ JV <_® ’ (49)

)= \% ~ En — Em + Ao
which together with Eq. (39) provides a numerically tractable tool to calculate the conductivity

tensor.

It is worth to mention that since
1 1 hoo

En — Em + AT En — Em (en —€m) (en — € + hw)

0,,(¢;w) can be written into the compact form,

50
— Em €n — Em + Ao (50)

. h flen) = flem) 0" (@) )" (=0)
O-/M’(Q’ CU) - ZV ; En .
It should also be noted that in calculations of optical spectra a finite (positive) value of ¢ is
considered in order to account for finite life-time effects. It is easy to show, that this is indeed
equivalent by folding the spectrum with a Lorentzian of half-width . Therefore, we often speak

about the complex conductivity tensor, 0,,(q, ).

2.3 Contour integration technique

As what follows we evaluate X, (¢, @) by using a contour integration technique, keeping in
mind that we have a finite imaginary part of the denominator in Eq. (49). Consider a pair of
eigenvalues, €, and €,,. For a suitable contour I'; in the complex energy plane (see Fig. 1) the

residue theorem implies

(2 S
él dz G = -2 (51)

Z2 — € + hw 4 i0) €n — €m + Iw + 06
N1 1
+2i0 —
Tk:_ZN?H (zk — €n) (2 — €m + Bw + i6)

where the 2z, = ep + i(2k — 1)d7 (ep is the Fermi energy, kp the Boltzmann constant, 7" the
temperature and 67 = wkgT') are the (fermionic) Matsubara-poles. In Eq. (51) it was supposed
that N; and N, Matsubara-poles in the upper and lower semi-plane lie within the contour I'y,

respectively, i.e.,

10



<2N1 — 1)6T < 51 < <2N1 -+ 1)6T , (52)
<2N2 — 1)6T < 52 < <2N2 + ]->6T . (53)

Eq. (51) can be rearranged as

. f(En) 1 f(z)
~ o 4
e RN S CEr | ey REaT) 54
or 1
T
+Z7T k;_ZNQ_A,_l (Zk_en)(zk_em"'hW"‘Z(s)

Similarly, by choosing a contour I'y (in fact, I'; mirrored to the real axis, see figure) the following

expression,
m 1
hw+ €, —€n +10 21 Jp, (2 —€m)(2 — €, — hw —10)
Na 1
0T
+Z_ . 9
T k_ZNlH (2 — €m) (2K — €, — hw — 10)
can be derived.
, Imz
)
F1 < 1 X
€ +C X
X 5 T90 Xz
X
................ SRR FUURUR SO
e X
811 m X
€ ~ R -
b F
. % Re z
_82 X
X X
; > g -C X
Fz _81 X

Figure 1: Schematic view of contours I'y and I'y ({ = hw + i6).
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Inserting Eqgs. (54) and (55) into Eq. (49) and by extending the contours to cross the real

axis at oo and —oo, X, (w) can be expressed as

S (@) ) (=)
fi;ldzf(Z)Z(Z_en)(z—€m+hw+i5)_ (56)

() T (=)
7£2 dzf(2) ; (z—€em)(z— € — hw — 25)}

o [ L (@) T (=)
+Zﬁ{ Z Z(zk—en)(zk—em+hw+i5)+

k=—Ns+1 m,n

I (@) Sy ()
Z sz—E zk—en—hw—ié)}

—Ni1+1 m,n

It is now straightforward to rewrite Eq. (56) in terms of the resolvent,

o=y el (57)
such that n

Sl ) = ~g { f 42 FO T, @ Gt ot i) 1 (-0 G- (59

$ 1T U@ G (-0 6~ ho- )]}

—1—27(:—‘:;{ ﬁ;ﬂ P U (@) Gloi+ B +6) J, (—) Gla)] +
k_ﬁNZ:HTr[ (@) G(zx) J, (—q) G(zk — hw — 15)]} .
By using the quantity,

S 21,22) = 5 TP @) Glen) Jo (-0 Glew)] (59)

for which the following symmetry relations apply,

ZV/,L(_(T; 22721) - Zp,u((j; 217Z2) ) (60)
i;u/(q_’\; ZT) Z;) = iuu(@; 21, 22)* = iyy(_@ 22, zl)*a (61)

Y, (q; ™) can be written as

12



Y (qiw) = j{ dz f(2) S (¢ 2 + hw + 6, 2) (62)

—7{ dz f(2) iu,,(@ 2,2 — hw —id)
s

Ny
—2id7 { > Sl + hw + 6, 2,)

k‘——NQ—‘rl
+ Z QVZkak_hu)_Z(s)} ’
—Ni1+1

which because of the reflection symmetry for the contours I'y and I'y (see figures) and the

relations in Egs. (60-61) can be transformed to

Sul@.w) = P ds ) Syl o 0,2

_ (y{ 0z 1(2) So(— 2 — b + 36, z))*

N1
~2i6p Y {Ew(cf; 2+ hw + 16, 2
k=—Ns+1

-+ iwj(—(j’; Zk — hw + 25, Zk)*} .

(63)

2.3.1 Integration along the real axis: the limit of zero life-time broadening

Deforming the contour I'y to the real axis such that the contributions from the Matsubara poles

vanish and using relations in Eq. (60-61), Eq. (63) trivially reduces to

L (q, @) = (64)
:/ de f(e) [ (@5 € + hw + 16, e 4+ 10) — E o(—q; € 4+ hw + 19, € — i0)]
- / de f(e) [iw(q_’, € —10,e — hw —id) — ilw(—q_’; € +1i0,¢ — hw —i0)] ,
or by inserting the definition of iw(cf; 21, 22),
S (q, @) = (65)
1 o0
~5v de f(e) (Tr{J,(Q) Gle+ hw+ib) J, (—=7) G (e)}

—Tr{J,(=q) G(e+ hw +1i6) J, (7) G (e)}
—Tr{J, (@) G (e) J, (—q) G(e — hw +i0) }
+Tr {J, (=) G*(e) J, () Gle — hw —ib)}) |

13



with the up- and down-side limits of the resolvent, G*(¢) and G~ (¢), respectively. By taking
the limit § — 0, Eq. (65) transforms to

S (o w) = (66)
_# _Zdﬁ f&) (Tr{J.(9) GH(e+hw) J, (=) GT(e)}
—Tr {J, (—=q) G (e +hw) J, (§) G (e)}
= Tr {J, (@) G (€) o (=@) G™ (e + hw) }
+T7{Ju (=0) GH(e) S (@) G (e = hw)}) -

In particular, for = 0, Eq. (66) reduces to

L (w) = (67)
1

— e f(e) (Tr {J, G (e + hw) J, [GH(e) — G~ (9]}

—0o0

7 {J, [GH) = G ()] S G (e~ hw)}) .

By shifting in the second term of Eq. (67) the argument of integration by hAw, the Hermitean
part of 3, (w),

1 *
Re Ew(w) = 5(21“,((4)) + Euu(w) ) ) (68)
can be expressed as
Re ¥, (w) = (69)
% de (f(e) — fle+hw))Tr{J,ImG* (e + hw) J,ImG*(e)} ,
with
Im G () = % (GH ()~ G(0)
Since, quite clearly, Re ¥, (0) =0,
Reo,,(w) = w : (70)

as used in practical calculations.

2.3.2 The static limit

In order to obtain the correct zero-frequency conductivity tensor, Eq. (65) has to be used in

formula (43). Making use of the analyticity of the Green functions in the upper and lower

14



complex semi-planes this leads to

- I (71)

27V
o6 9GO g (6) - G (0] - TG (0) — G- () 2L } .

o
x Tr {J 9 9

Integrating by parts yields

Ty = — / Y (€>SW ) . (72)

oo de
with
h g

SHV (5) = —W dEI

xTr{JuaG(;e D 6 6] - en@ - G P

which has the meaning of a zero-temperature, energy dependent conductivity. For T' = 0, o,
is obviously given by

O = S (ep) . (74)

A numerically tractable formula can be obtained for the diagonal elements of the conductivity

tensor. Namely,

#8G+() o + _ " n _ HaG—(E) B
{J 5 JHGT(e) = G~ (e)] = JH[GT(e) — G (¢)]J T}_

=Tr {J“aae [G+(€) — G_(e)} JHGT(€) — G_(e)]}

= ST {6~ GG ()~ G (@)}

thus, the widely used formula for the dc-conductivity

"y [ G () — G (e0)] PG (er) — G (ex)]) (75)

Thre = 4V

is derived. It should be mentioned that by recalling the spectral resolution of the resolvents,

GF(e) — G (e) = 21 Im G (e) :—2”2\” (n]6(c—en) , (76)
Eq. (75) turns to be identical with the original Greenwood formula,

Z kTR S(ep—en) 0(ep —Em) . (77)

15



Alternatively, the static conductivity tensor, Eq. (71), can be recast according to Crépieux

and Bruno, PRB 64 014416 (2001) Appendix A. We start with the following identical manip-

ulations,
TT{ 72 it - () - e - o) 2 (6)}
_ 2 OGT(€) 1t w1 9G(€)
—TT{J e J'GT(e)] + J'G (e)J] e
*(e ~(e
—Tr {J“8G86< >J”G_(e) + J“G+(6)J”8Gae( ) } (78)
= %T?‘ {JGT(€)J'GF(e) + J'G (€)J'G (e) — J'GT(e) J'G (€) }
T {J“G*(e)J” aG(; © | aGa (©) (e )} (79)
= T [OH(0) ~ G (] G () — G 6~ ()]}
+ %gﬂ [JFGH(e)J*GH(e) + J'G— (€)' G~ (e)}
— Ty {Jﬂcﬁ(e)JV aagﬁ D | aGae(e) J”G‘(e)} (80)
— _%gﬂ {J#[GT(e) — G (€)] J'G () — J'GT(e) J" [GT(e) — G (e)] }
+ %Tr {JMaG(; OGS v (e J“G*(e)J”LG; (©
ey G (€) 1, 0G7(€) o,
JHG (€)J e —J e J'G (6)} : (81)
Utilyzing 249 Gi( )2, the second term can be rewritten as
— §Tr {JHGT(e)?J"GT(€) — J'GTF () J"G T (€)?
+ JG(e)J'G™(e)* — J'G(e)*J"G(e) } . (82)
Since
JH = —ecatt = e_i; [zt H] = —e—fz [x“, G* (5)_1] = e_h@ (Gi (5)_1 ot — hGE (5)_1) , (83)
thus,
Tr{J'G*(€)*J'G*(e)} = e—iTT {JHGF () 2" G* () — J'GF(€)*2"} (84)
Tr{J'G*(e)J'G*(e)*} = Tr {G*(e)J"G*(e) J'GF(e) } (85)
= ETT {2"G*(€)J'G*(€) — G*F(e)*at T } (86)

16



this term can further be rewritten as,

—TT {"'GT(e)J"GT(€) — GT(e)’x"J" — JFGT(e)a"GT () + G (e)*x” J* (87)
—2"G™ () J'G (e) + G (e)%2" " + J'G™(€)2"G™ (€) — G*(e)*z” I}

- —%%Tr (G0 - 67(0) (@ — 1) (5%)

- ﬁ Re Tr {a#G*(e)J'GF(€) — TG (€)a" G (e)} .

Here we used,
Tr {x“G+(e)J”G+(e)}* =Tr{z"'G (e)J'G (¢)} . (89)

Collecting all terms, the static conductivity tensor can be written as

h
O = 47TVTT {J“ [G+<EF) — G_(EF)} JVG_<€F) — JMG+(€F)JV [G+(€F) — G_(EF)]}
€ — 14 v
- 4i7TVTr {(G*(er) — G (ep)) (2T — 2V J")}
4Z7TV Re/ de'Tr {a'GT(€)J'GF () — J'GT(e)x"GT(€)} . (90)
The first to terms are clearly identical with o/, and o/} as given in Eqs. (Al14) and (A15)

of Crépieux and Bruno, respectively, while the third term can be shown to be zero (I. Turek,

private communication). Namely, by using Eq. (83),
Tr {J.}“G(Z)JVG(Z) — JFG(2)x"G(2)}
= %Tr {+"G(2) (G (2) ' a¥ —2G (z)_l) G(z) - (G (2) a2t — 2tG (z)_l) G(2)z"G(z2)}
= e_hz [Tr{z"z"G(2)} — Tr{z"G(z)z"} — Tr{z'a"G(2)} + Tr{z"G(2)2"}] =0. (91)

The final expression of the static conductivity tensor, therefore, reads as

h

Ouy = WTT {JM [G+(EF) — G_(EF)} JVG_(EF) — JMG+(EF)JV [G+(EF) — G_(EF)]}
+ 4;‘3‘/% {(G*H(er) = G (er)) (2" — 2% J")} . (92)
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3 CPA condition for layered systems

Consider a layered system, which at best has only two-dimensional translational symmetry.
Suppose such a layered system corresponds to a parent infinite (three-dimensional periodic)
system consisting of a simple lattice with only one atom per unit cell, then any lattice site ﬁpi
can be written as
épi = C_:p + éz ; éz €Ly, (93)
where 6_’;, is the "spanning vector” of a particular layer p and the two-dimensional (real) lattice
is denoted by Lo = {éz} with the corresponding set of indices I(Ls). For a given interface
region of n layers, containing also disordered layers, the coherent scattering path operator 7.(z)
is given by the following Surface Brillouin Zone (SBZ-) integral,
P (2) = Qg / exp (—ik-(F: = 1)) 79(k,2) &%, (94)
which implies two—dimensional translational invariance of the coherent medium for all layers of
the interface region, i.e., that in each layer p for the coherent single—site t—matrices the following

translational invariance applies:

() =1(2) : Viel(Ly) . (95)

C

It should be noted that all scattering path operators are angular momentum representations
reflecting either a non-relativistic or a relativistic description of multiple scattering. Numerical
recipes to evaluate 779(k, z) in (94) for layered structures are provided by different variants of
multiple scattering theory. In the following supermatrices labelled by layers only and denoted

by a "hat’ symbol will be used:

te(z) 0 0
t(z)=| o0 ?(2) 0 , (96)
0 0 (2)
and
T’ (2) 7o' (2)
T(2) = , (97)
7(2) To(2)
p,q=1, ;N



Quite clearly, a particular element of T.(2),
R(2) = 22() = 0 = b, [ FE ) (98)

refers to the unit cells at the origin of Ly in layers p and ¢q. Suppose now the concentration
for constituents A and B in layer p is denoted by ¢ (p=1,...,n). The corresponding layer-
diagonal element of the so-called impurity matrix, that specifies a single impurity of type « in

the translational invariant "host” formed by layer p, is then given by

P

Dy (2) = DP(2) = [L — mP(2)r*7°(2)] ", (99)

Q

with
mP(2) = mb(2) = @l (2) =1 (2) ' =T (2), a=AB | (100)

where ﬁ(z) is the single-site ¢-matrix for constituent « in layer p. The coherent scattering path
operator for the interface region 7.(z), is therefore obtained from the following inhomogeneous

CPA condition,

=) GE (D) (101)
a=A,B

(T (2)) o = T0(2) = Do (2)72(2) (102)

i.e., from a condition that implies solving simultaneously a layer-diagonal CPA condition for
layers p=1,...,n. Once this condition is met then translational invariance in each layer under

consideration is achieved,

()0 = (TP g0 = (TP D) (103)
VieI(Ly) , p=1,...,n

Similarly, by specifying the occupation on two different sites the following restricted averages

are obtained,

i,qj P 1,05 ( )\ T2
pras () DU ()Dhe) (104)
. . i.pj AP i.D7 P
p=a it = () = D)D) (105)
where (72°%(2)) ., .;s has the meaning that site (subcell) pi is occupied by species a and site

(subcell) gj by species  and the symbol ¢ indicates a transposed matrix.
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4 Conductivity for disordered layered systems

4.1 General expressions

Suppose the electrical conductivity of a disordered system, namely o,,,, is calculated using the

Kubo-Greenwood formula (77)

Ty = Novat <Z JH T8 S(ep — em)d(ep — en)> , (106)

m,n

where Ny is the number of atoms, V,; is the atomic volume, and (---) denotes an average over
configurations. As we have seen, Eq. (106) can be reformulated in terms of the imaginary part
of the (one-particle) Green function

B h
= TNVt

Tr (J,ImG*(ep)J, ImG*(ef)) . (107)

By using "up-” and "down-" side limits, Eq. (107) can be rewritten as

1 . - o ~ _ ~ _
Opp = 1 {Jw(5+75+) +0uu(e7,67) = Tuule® ) = Tpule =5+>} ) (108)
where
et =ep+id |, e =ecp—id ; 6—40
and
5#“(81,82) = _WNOVtTT <J#G(€1)JuG<€2)> . (109)

(eief{ete”} ; i=1,2)
Employing the expression of the Green function within the KKR method, a typical contribution

to the conductivity can be expressed in terms of real space scattering path operators,

5ﬂy(51,€2) = (110)

n

— %Z > Z N tr (P (e, 20)TP 0 (1) Y (21, £2) 79 (e3)) ’

p=1 i€I(L2) ¢=1 |\ jeI(L2)

where C = — (4m?/h*7Vy), No = nN is the total number of sites in the interface region, as
given in terms of the number of layers in the interface region (n) and the order of the two-
dimensional translational group N (number of atoms in one layer) and ¢r denotes now the trace
in angular momentum space. Let lﬁa (e1,€2) denote the angular momentum representation of

the p—th component of the current operator according to component o« = A, B in a particular
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layer p. Using a non-relativistic formulation for the current operator, namely J = (eh/im) 6,

the elements of J" (€1, €5) are given by

T (e1,€2) = (111)

a—Zﬁ?(52%Fpo)d3Tpo , (A= (L,m)) ,
L

while within a relativistic formulation for the current operator, namely J = eca, one gets

Jioan (€1, 62) = (112)
=ec / Z£a<51; 7/_’)p())xozu Z/Zi(/)é(gZ; 7?pO) dSTpO 9 (A = (67 ja m])) .
ws

In Egs. (111) and (112) the functions Z{"(e;;70) are regular scattering solutions and WS
denotes the volume of the Wigner-Seitz sphere. It should also be noted that

p0,a pi,o

i;a(gl,EQ) = iﬂ (81,82) = i,u (81,82) , Vi € I(Lg) . (113)

From the brackets in (110), one easily can see that for each layer p the first sum over Lo yields
N times the same contribution, provided two-dimensional invariance applies in all layers un-
der consideration. Asumming this kind of symmetry, a typical contribution & ,,(c1,€2) to the

conductivity is therefore given by
ouuler, €2) = (114)

C n n . ' -
= EZZ Z tr <lﬁ0(52,El)Ipo’qj(&)lZJ(El,6g)ij’p0(52)> ,

p=1 q=1 | jeI(L2)

where p0 specifies the origin of Lo for the p-th layer. This kind of contribution can be split up

into a (site-) diagonal and a (site-) off-diagonal part,
Tuuler,e2) = 0y, (e1,62) +0,,(e1,62) (115)
4.2 Site-diagonal conductivity

By employing the CPA condition in (101) and omitting vertex corrections, for the diagonal part
(p0 = qj) one simply gets in terms of the definitions given in (103) and (105),
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52#(81, 62) =

= O S it [ e) (B S 20) B (e

p=1 a=A,B

- %Z Z cptr :J (£2,21) D’ (1)7” (el)Jpa(el,ez)lA) (€9)TV (52)]

p=1 a=A,B
C . o [~pa yJel
:—Z Z CptT’ l,u (52,61) (81)J (61,82) (52)] s (116)
n p=1 a=A,B )
where
Iy (e2.61) = Di(e2)' J2 (g2, 1) Do (e1) - (117)

4.3 Site-off-diagonal conductivity

According to (105) and (104) the off-diagonal part can further be partitioned into two terms

oL (e1,62) =02 (1,62) + 0 (e1,2)
) i 1

; (118)
where
o (e1,62) = (119)
CZZ Opg) 4 > tr (g2, €1)77Y (e1) 0% (£1,22)T9 ™ (e2)) p
p=1 ¢=1 Jel(L2)
and
Uw(fl»@) (120)
C n n ' '
EZZ% Yt (J(e,e1)T (1) Y (61, 82) TV (22))
p=1 g=1 (J#0)€I(Lz)

As one can see 0 (€1, €2) arises from pairs of sites located in different layers, whereas o a W(€1,62)
corresponds to pairs of sites in one and the same layer (excluding the site-diagonal pair already

being accounted for in a .(€1,€2)). In general the averaging of UW(El, g9) is given by

e =S 10 Y Y a4

p_l q=1 Jj€I(L2) o,p=A,B

X tr {iﬁ“(ez,el)@po’” (el)J,‘j](el,Ez)zq]’pg(ffz»pomqjﬁ} : (121)
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By employing the CPA condition and omitting vertex corrections, 0 (€1 g9) is found to reduce

to

~2 51,82 ZZ 1— pq Z Z gcqﬁ

P—l g=1 jEI(L2) o,p=A,B

i {120, 0) () gy L) (TP} (122

or, by using (104), to

ﬁiu(al,eg):%ZZ(l—épq) Z Z cgcg

p=1 g¢=1 jel(L2) a,=A,B

x tr{J0 (e, 201200 (=) T (61, 2) 7870 (22) } (123)

Since the site-off-diagonal scattering path operators 77%%(z) are defined as

() = Ok, [ FREE ) PE (124)
the orthogonality for irreducible representations of the two-dimensional translation group can
be used:

> )P e) = 5, [ FE ) E ) (12)
JEI(L2)

For 6iu(51’ g9) one therefore gets the following expression,

52, (e1,82) = nQSBZZZ (L=6) > cocl (126)

p=1 g=1 a,3=A,B

x / tr {27 (2, 20 20, 20) 0], (1, 22T () | P

From the above discussion of 77, ,(£1,€2) it is easy to see that &) (e, €2) is given by

o 12
(€1, 80) = nQSBZZ Z cc (127)

a,0=A,B
pp

« /tr{f; (e, ) (.2 ) (er, 22 (Roco) } P

+ O_i:arr(gh 62) s

~3,corr

where o e

(e1,€2) arises from extending the sum in (120) to Vj € I(Ly) and subtracting a

corresponding correction term of the form,
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Gy (e1,62) =
=——§; ZAB coeitr {120 (e3,20) Dl ()7 (e1) Dl e1)
o x I (1, e3) D ()70 (e2) Dl (2)' |
:__Z Y. e ’57"{:2&(52781) (81)325(81,82) (82)}. (128)

p=1 a,6=A,B
4.4 Total conductivity for layered systems

Combining now all terms, a typical contribution ¢,,(e1,2) to the conductivity is given by

Oup(€1,82) = (129)
C - a ~pa
== % tr{l“ (62,€0)77 (1) L7 (61, €2)77 (52)}
p=1 a=A,B
~pa ~pf
— el tr {lﬁ (62,077 (e1) ] (e1,62)77 (52)}
a,f=A,B
B
SBZZ > cg‘cq/tr Iy (22,20)72 (K, 1), (e1,2)T2 (K, az)}d%) ,
q=1 a,0=A,B

which, as far as the summations over layers are consered, can be partitioned into 'single’ and
"double’ terms,

UMM 51,62 E UMM 81,62 E 0’ 51,82 (130)

pq=1
Quite clearly, the single-layer contrlbutlons are defined as

Opu(e1,€2) = (131)
C ~pa
= — Z Cf; (tT {JZ (82,81) (€1>J (51,82) (82)}
n a=A,B
~par B
_ Z cgtr {ii (€9,61)Th (51)JZ (e1,€9)Th (52)}>
B=A,B
and the layer-layer terms as
op(er,e2) = (132)
¢ 3P ~qp
— a B
= 0y Z e, /tr {b_fu (€9,61)Th (k 51)J# (1,89)TY (k’ 82)}d2k.

a,f=A,B
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