1. Prove that the expectation value of a Hermitean operator A,

A= Zf (En) <90n| A‘@ﬂ) ) (1)

where f(g) = 1/ (1+ e W/*sT) is the Fermi distribution,  is the chemical potential, and
H|pn) = enlpn), can be expressed as

A= —% Im/dzf (2)Tr (AG (z)) — 2kgT Z ReTr (AG (zx)) , (2)

Im 2z, >0

where ™ denotes a contour in the upper complex semiplane starting end ending at —oo and oo,
respectively, and 2z, = p+1i (2k + 1) mkgT  (k € Z) are the poles of f (z) (fermionic Matsubara
poles) lying between the real axis and .

2. Let’s consider a solid system described by a tight-binding Hamiltonian matrix, H = { H Zj}
The atom at site 7 is replaced by an other atom, characterized by the on-site matrix, H’, while
the off-site blocks of the Hamiltonian are supposed to be unchanged.

(a) Prove that the corresponding site-diagonal block of the resolvent matrix is
Q;i (2) =G, (2) L — AH,G,; (Z))il ) (3)

where AH, = H. — H, and G;; (2) is the site-diagonal block of the resolvent matrix of the host
system.

(b) Show that the single-site CPA condition for the ¢-matrices is equivalent with the following
condition for the resolvent matrices,

G5 (2) = ¢Gf (2) + (1 = )G (2) (4)

where G (z) denotes the site-diagonal block of the resolvent matrix when a single impurity of
type o € {A, B} is embedded into the effective medium at site i.

(The exercize was in part solved during the course.)

3. The nearest neighbor tight-binding Hamiltonian for a single-band system on a simple one-
dimensional lattice with lattice constant a is given by

Hij = 00ij +V (6ij1 + 0ij-1) (5)

where i and j denote sites of the lattice (V' > 0). Prove that, for Imz > 0 and gy — 2V < ¢ =
Re z < ¢ + 2V, the real lattice representation of the resolvent can be expressed as

li—3|
Z—E Z—E 2
(fvl -V (&) - 1)
Gy (2) = = , (6)
2w /(5) 1
consequently,
Gi(2) = : , @




and the density of states per lattice site is

! (8)

1
D(e) =
7T\/4V2 — (e —gp)?

(The exercize was in part solved during the course.)

4. Show that the single-site CPA condition for the above mentioned system can be written in
the form,

ce=cea+(l—c)eg—(ea—cc(2)(ep—ec(2) G (2) , (9)

where ¢ is the concentration of component A, €4 and g are the on-site energies for components
A and B, . (2) is the self-energy for the effective medium and

G, (2) = ! | (10)

VG = () — a2

5. Let us fix the on-site energies in the above example as

€EA=€y EB= —¢€p (11)
and introduce the variables
€0 g (2) 2
= — c = , = — . 12
Toy Ty 0 YT oy (12)
Eq. (9) can then be written as
xg — a2

Te=(2c— 1)z + :
(w—z)* =1

Solve this equation numerically by writing a corresponding computer code!

Important note: from the two possible values of \/(w — :cc)2 — 1 the one with negative imagi-
nary part should be chosen!

(a) An iterative solution can start with 2 = (2¢ — 1) zy (in fact, this is the virtual crystal
approximation). Apply a small positive imaginary part for w (Imw ~ 0.01 — 0.05) and use a
linear mixing scheme,

le((:n-&-l),in _ Oél,((:n),out + (1 o Oé) x(n),m (14)

[

with a suitable value of @ (o ~ 0.1 — 0.5)!

(b) More preferably, the iterative process proposed to have a power-like convergence should be
used. Start again with ' = (2¢ — 1) xg, then follow the steps:



1: GM(2) = - (15)
\/ (w — x&n)) —1
4
c (930 - l‘((;n)> (1—c) (:L“g + 93((;”)>
2: W= — (16)
1= (o= a®) G 1+ (0 +2) G
U
() (n)
3: Aglmt) = — (17)
1+t G
:L,((:n+1) — x((:n) + A:anJrl)
U
repeat from step 1 until convergence (18)
After getting the self-consistent solution for z., plot the dimensionless densities of states,
1
D.(w) = —1Im , (19)

(w—x)* =1

for c = 0.5 and z¢ = 1, for ¢ = 0.5 and xq = 2, and for ¢ = 0.1 and 2y = 2!



