1 One-dimensional lattice

1.1 Gap formation in the nearly free electron model
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Table 1: Eigenfunctions at k£ = = for the lowest two bands of a one-dimensional simple lattice.

1.2 Surface state

Surface potential:
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We look for a solution of the Schrodinger equation in the gap, i.e.,
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Wavefunction in the vacuum region, x > 0,

Y (x) = ae T (28)

ko=+VVo—E (29)

We know that for x < 0 the Schrédinger equation has no propagating solutions with energy
lying in the gap. For large x the wavefunction should, however, be a solution of the Schrodinger
equation for the bulk. This problem can be handled as in the previous section, but with a
complex wavenumber, k—iu (@ > 0). This ensures that the wavefunction exponentially decays
in the bulk region. According to Eq. (19) the wavefunction can be written as
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Regarding the scattering problem, we have to note that the current density for z > 0 is zero,
since the wavefunction is real. The current density for the incoming wave is
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while for the reflected wave,
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Note that these values are modified by the normalization of the wavefunctions. We are now

interested in the reflection coefficient that must be unity (no transmission),
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The right-hand side of the above equation is positive, since
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which is indeed satisfied, since the energy of the surface state lies in the gap.
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Because of (35) we can introduce a phaseshift § (—7 < § < 7) via the relationship,
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that means for any (positive) value of kg and p one can find a 6 (0 < 6 < 7/2) that satisfies
the above equation, i.e., a surface state will be formed. Since
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a sufficient condition for the existence of the surface state is
V>0 (53)
This is called a Tamm-state that happens in case of an indirect gap. By matching the wave-
functions at zy = —a/2, the condition of the surface state is V' > 0 (Shockley-state, direct

gap).
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FIG. 1. Results of the band-structure calculation along the I' M
direction for a 23-layer slab of Au(111). The shaded area represents
the projected bulk states, and the solid lines give the surface state
dispersion. The Fermi level has been adjusted to the experimental
position.



2 The Bychkov-Rashba effect

Planewave-like surface state in a non-magnetic host:
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where X is a spinor, k = (k,, k,) € SBZ (Surface Brillouin zone), N is the number of sites on
the 2D lattice. These states are eigenfunctions of the Hamiltonian, Hj, in absence of spin-orbit
coupling
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According to the simplest model of the Rashba-effect only the normal component of VV (r) is
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2.1 Alternative representation
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3 Spin-polarization
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and the eigenvectors are solutions of the equation
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One can define the helicity operator,
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thus, the eigenvalues of hy are +1.

0 de [ F1\ [ -1
(—ie"@ 0 ) (iew)_i(iew)

it follows that 1/){5 are also the eigenfunctions of hy,
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FIG. 2. Rashba spin-orbit interaction in a two-dimensional elec-
tron gas. The dispersions £ i(l€||) of free electrons are shown for
¥so=4/Bohr, kj=(k,,k,). The “inner” state [“+” in Eq. (6)]
shows strong dispersion, the “outer” weak dispersion [“— " in Eq.

(6)]. Both surfaces touch each other at IEHZO. For a better illustra-
tion, the Rashba effect is extremely exaggerated (compared to typi-
cal two-dimensional electron gases).
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FIG. 3. L-gap surface states on Au(111). (a) Dispersion of the

spin-orbit split surface states along K-I'-K [i.e., I€H=(kx,0)]. Open
(closed) symbols belong to the inner (outer) surface state. Gray
arrows point from the surface states at the Fermi energy Ey to the
momentum distribution shown in panel b. The region of bulk bands
is depicted by gray areas. (b) Momentum distribution at Er. The
thick arrows indicate the in-plane spin polarization [P, and P,,
according to Eq. (9)].
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