1 Time reversal

1.1 Without spin

Time-dependent Schrédinger equation:

ihdw (r,t) = {mA +V (r)] o (r, 1)

"Local’ time-reversal transformation, 7":

th<to<...<tp=Tt1>Tty>...>Tt,
T(ty—t1) = —(ta —t1)
T=T7"

Transformed Schrodinger equation

d(foT)(t) f(Tt+Tdt)— f(Tt) f(Tt—dt)—f(Tt) 7df(Tt)
dt N dt B dt N dt
\
hQ
—ihopw) (v, Tt) = [_QmA +V (r)} Y (v, Tt)

On the other hand,

h2

—ihoy)* (r,t) = [_ZmA +V (r)} Y™ (r,t)
U
Y (r,Tt) = ¢" (r,t) = C9) (r,t)
Properties:
c*’=1,c7'=cC
C' is anti-hermitian,
|Cp) = (p|C¥) = (CY|p)"
and anti-linear,
C (c11 + capa) = iCp1 + c5C 0o .
However, the transformation C' preserves the norm of the wavefunctions,
(CYICY) = (lv) .
Relationship to operators:
C{xy)=r(Cy) = Cr=rC
h h
C(py)=C (Z.WJ> =—VCy=-p(Cy) = Cp=-pC

CL=C(rxp)=rCxp=—(rxp)C=-LC



1.2 With spin

Hamilton operator

p’ LB
H=-— 22 (L+2S)B
5 +V(r)+ h( +28S)

Pauli-Schrodinger equation

ihdp (r,t) = [—;;A SV () + “?B (L + 28) B} b (r,1)

Time-reversed magnetic field: B'= —B

Time-reversed Pauli-Schrodinger equation
. ’ N h? UB A
—ihop' (v, Tt) = —%A +V(r)+ o (L+2S)B’| ¢ (r,T%)

- [_;LA+V(r)—’;f(L+2S)B] Y (x, Tt)

On the other hand:

2
RO (x, ) = [—;nA PV @)+ B ) B] ¥ (1)
B N BB (L —28")B| ¢* (.t
~ | gA 4V - B2 @28 B

It is then tempting to suppose that
W (r,Tt) = Lo (r,0) = LC W (r,1)
I
—ihLow™ (r,t) = [—zmA +V(r) - ’%B (L 4 28S) B] LY* (r,t)
4
. * h2 HB —1 *
This equation is obviously satisfied if

L7'SL=-8"=-CSC = SLC=-LCS

Let’s introduce the simplified notation: T := LC
TS = —ST.
It is easy to prove that
T=0,C
is a satisfactory choice (in many text-books T' = io, C' is chosen).
Proof of Eq. (26):

(17)

(22)

(23)

(25)

(26)

(27)

(28)



T o, T = (-0,0) 04 (0,0) = 00,0, = —0, (29)

7700, T = (~0,0) 0, (0,C) = —0y (30)
T7'¢,T =(-0,C)0,(0,0) = 0,00, = —0, (31)
Properties:
T-!'=Co, = 0,0 =-0,0=-T (32)
\ (33)
T? = -1 (34)

From the relationship,

(WITe) = (¥lo,Cp) = (oy¥1Cp) = (03°)" (¥sICpr) = (r|Coy*s)

= (p|Coyh) = = (@|TY) , (35)
it follows that
(|Tp) = = (|Tp) =0, (36)
i.e. ¥ and T are orthogonal and, also, T' is norm-conserving,
(TY|TY) = = (PIT?¢) = (PlY) . (37)

The operator of spin-orbit coupling, ﬁ (VV x p) o, commutes with T"

T='(VV xp)oT = (T (VV xp)T) (T 'oT) = (VV x (—=p)) (—0) = (VV xp)o.  (38)

1.3 Kramers degeneracy

Let us consider an eigenfunction, 9 (r1s1,...,rysy) of the N-electron Hamiltonian,
Hi = Ev (39)
where
T 'HT =H . (40)

The time-reversed wavefunction, T, is then also eigenfunction of H with the same eigenvalue,

T HTy = By = H (T+)) = E(Tv) . (41)

The representation of T is
T=oV...cMCc=(-1)"ColV...o™=(-)"17' = 1= (-)V, (42)
TH=T"'=(-)"T, (43)

since for any k =1,..., N
T7S® = —siT (44)

Furthermore,

(|T) = <1/;|a§1> . ..a;N)c¢> = (—)N <¢|ca§1> . ..U§N>¢> L= )Y <a;1> oMyl ¢>

q. (10)

= (1) (Ylo}...oNOy) = (-1)Y (¥|Ty) (45)

Corollary: For odd number of electrons 1 and T are orthogonal, therefore, the eigenstates of the system
are at least two-fold degenerate.



1.4 Kramers degeneracy of Bloch-states
We consider the Hamiltonian derived from the Dirac equation up to first order of 1/c?:

2 p4 h2 h
© 8m3c2 + 8m2c? AV (r) + 4m2c? (VV xp)o

This one-electron Hamiltonian is invariant w.r.t. time-reversal,

_p
H—2m+V(r)

T'HT = H .

From the previous section it follows that the eigenstates are at least two-fold degenerate:
Hy =¢ey
H(Ty) =e(Ty)
and T is orthogonal to .
What is 797 A Bloch-eigenfunction is defined as

Vi (r) = e"Cuy (r)

(p + hk)* h2
8m3c? 8m2c2

Hyuy = exug

(p + hk)?
2m

AV (r) + _h (VV x (p+hk))o

H =
k 4m2c2?

+Vi(r)—

It is straightforward to show that

T 'HT=H_,

thus,
T_lHkuk = EkT_luk

\
H_y (Tﬁluk) = €x (Tﬁluk)

and the two degenerate wavefunctions are:

wk(r):e"‘“( o (r)) and 4 (r)=e‘“‘”( e, ) )

uky (1) —itg (1)

1.5 Space inversion
Let’s consider the case when also space inversion applies:
V{Ir)=V(-r)=V(r)

¢
TH_ I = Hy

This also implies that €_y = e with the corresponding wavefunction for —k,

et ()Y

uk) (=)

(58)

(59)

(60)



In case of both time-reversal and inversion symmetry, the two eigenfunctions for —k with the same energy
e_k (= ex) are orthogonal:

[0 oSt =i [l () g (1) = e (1) s (1)) =0 (61)

Corollary: The Bloch-states of a nonmagnetic centro-symmetric crystal are at least twofold degenerate.

1.6 Sorting out by spin-expectation value

In general, the eigenfunctions wl((“ ) (u=1,2) are not eigenfunctions of the spin-operator S, for any
prechosen quantization axis z. This is only the case in the absence of spin-orbit coupling. Nevertheless,
it is possible to construct the orthonormal linear combinations,

o = el + e (62)
bl = —au + (63)
¢1,¢0 € C, |er]? 4 |ea]® = 1, such that
(e ol ) = (el oy o) =0 (64)
and
(W ol 7)) = £ (65)
0< P <0 (66)

Thus we can sort out the two degenerate states by the ’spin-character’, P.
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FIG. 2: Band structure of Pt from the fully relativistic (red)
and the relativistic with the spin-orbit coupling scaled to zero
(black) calculation.
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FIG. 3: Calculated fully relativistic band structure of bcc Fe.
The small inset shows a comparison to the calculation with
the spin-orbit coupling scaled to zero (x=0). The spin-orbit
interaction leads to avoided crossings.
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FIG. 4: Calculated relativistic Fermi surface of Cu (upper
left), Au (upper right) and Pt (lower left: 9th band, lower
right: 11th band), and the expectation values of Baz for the
|\IJ:> states are indicated as color code. Note the different
scale for Cu and Au in comparison to Pt.



7th band

=

‘-

8th band "/“
o

1.0 0.0 1.0 -1.0 0.0 1.0

FIG. 5: Calculated relativistic Fermi surface for the bands
7-10 of bcec Fe. The expectation values of the So, operator
are given as color code.



