Optics Exam

Name:
Group:

1. A particle with a mass of $m=10^{-5} \mathrm{~kg}$ and with a charge of $Q=$ $6.28 \times 10^{-4} \mathrm{C}$ is moving in the presence of uniform magnetic field. The components of the magnetic field and the velocity are $\vec{B}=\left(0,0,10^{-3} T\right)$ and $\vec{v}=\left(0,20 \frac{\mathrm{~m}}{\mathrm{~s}}, 10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$, respectively.
a. Give the velocity of the particle in 50 s !

8 points
b. In how many seconds will the particle move with the same velocity as it had at the beginning?

7 points
2. There are two long horizontal straight wire in the presence of vertical magnetic field of 2 T on which a small metal rod with a mass of $m=$ $10 g$ can slide without friction. (see the Figure)

a. In the first case the rails are connected to a battery through a resistor of $R=0.1 \Omega$. How large should we choose the voltage of the battery in order to keep the position of the rod on the rail?

7 points
b. In the second case the the resistor connects the pair of rails. Give the maximum of the velocity of the metal rod in this situation! 8 points
3. The RLC system shown by the Figure is connected to a A.C. power supply. The amplitude of the power supply is 311 V . The same voltage can be measured on the resistor.
a. Give the frequency of the A.C. voltage!

5 points
b. How large is the impedance of the system?

5 points
c. Give the amplitudes of the voltages on the inductor and the capacitor!

5 points

$$
\begin{aligned}
R & =100 \Omega \\
L & =0.04 H \\
C & =250 \mu F
\end{aligned}
$$

4. The angle of incidence in the case given by the Figure is $90^{\circ}-\alpha$ where α is the angle of the prism. The index of refraction of the prism is $n=1.3, \alpha=60^{\circ}$.
a. Give the direction of the outgoing ray!

10 points

$0-23$	1
$24-31$	2
$32-39$	3
$40-47$	4
$48-55$	5

Problem	
1	
2	
3	
4	

