Name:
Group:

Number of points:
 Mark:

1. A particle with a mass of $m=10^{-6} \mathrm{~kg}$ and with a charge of $Q=10^{-4} \mathrm{C}$ has circular motion with the radius of $r=10 \mathrm{~m}$ in the horizontal plane in the presence of uniform vertical magnetic field. The velocity of the particle is $v=20 \mathrm{~m} / \mathrm{s}$
a. Give the magnetic field!

8 points
b. Give the frequency of the motion in the field which is rotated by 30 degree to the field given in the previous question!

7 points
2. A metal rod can slide on a pair of rails without any friction in the presence of magnetic field of $B=0.5 \mathrm{~T}$ perpendicular to the plane of the rails. The resistivity of the rod is $R=0.5 \Omega$ and the resistivity of the rails is negligible. A battery of $V=1.5 \mathrm{~V}$ is connected to the rails as it is shown by the figure.

a. How large force must on the metal rod be exerted in order to keep its position?

7 points
b. Long time after the rod is released it will have constant velocity. Give this velocity and the current through the rod! 8 points
3. The RLC system shown by the Figure is connected to a A.C. power supply. The effective voltage of the power supply is $V_{e f f}=10 \mathrm{~V}$ and the effective value of the current is $I_{e f f}=0.2 \mathrm{~A}$.
a. How large is the impedance of the system?

5 points
b. How much power is dissipated on the system?

5 points
c, Give the frequency of the power supply!
5 points

$$
\begin{aligned}
R & =30 \Omega \\
L & =0.01 H \\
C & =500 \mu F
\end{aligned}
$$

4. There is an optical fiber as it is given in the figure. The index of refraction inside the fiber is $n_{2}=1.3$ and outside - in the air - it is $n_{1}=1$. Give the largest value of α for which the light will leave the fiber at the other end!

10 points

$0-22$	1
$23-31$	2
$32-39$	3
$40-47$	4
$48-55$	5

Problem	
1	
2	
3	
4	

