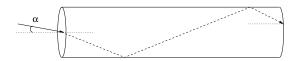

Name:	Number of points:
Group:	Mark:


- 1. A particle with a mass of $m = 10^{-6}$ kg and with a charge of $Q = 10^{-4}$ C has circular motion with the radius of r = 10 m in the horizontal plane in the presence of uniform vertical magnetic field. The velocity of the particle is v = 20 m/s
 - a. Give the magnetic field! 8 points
 - b. Give the frequency of the motion in the field which is rotated by 30 degree to the field given in the previous question!7 points
- 2. A metal rod can slide on a pair of rails without any friction in the presence of magnetic field of B = 0.5 T perpendicular to the plane of the rails. The resistivity of the rod is $R = 0.5 \Omega$ and the resistivity of the rails is negligible. A battery of V = 1.5 V is connected to the rails as it is shown by the figure.

- a. How large force must on the metal rod be exerted in order to keep its position? 7 points
- b. Long time after the rod is released it will have constant velocity. Give this velocity and the current through the rod! 8 points
- 3. The RLC system shown by the Figure is connected to a A.C. power supply. The effective voltage of the power supply is $V_{eff} = 10 V$ and the effective value of the current is $I_{eff} = 0.2 A$.
 - **a.** How large is the impedance of the system? 5 points
 - **b.** How much power is dissipated on the system? 5 points
 - c, Give the frequency of the power supply! 5 points

4. There is an optical fiber as it is given in the figure. The index of refraction inside the fiber is $n_2 = 1.3$ and outside – in the air – it is $n_1 = 1$. Give the largest value of α for which the light will leave the fiber at the other end! 10 points

0-22	1	Problem	
23-31	2	1	
32-39	3	2	
40-47	4	3	
48-55	5	4	