Optics Exam

Name:
Number of points:

Problems

1. On the Figure a schematic picture of a mass spectrometer is shown. A mixture of the two isotope of the carbon atoms enters the uniform magnetic field with velocity of v. The mass of the C^{13} isotope is $m_{13}=$ $13 m_{p}$ and the mass of the C^{14} isotope is $m_{14}=14 m_{p}$ where $m_{p}=$ $1.6 \times 10^{-27} \mathrm{~kg}$ is the mass of a proton. The carbon atoms are singly ionized. It means that one electron is removed from the atoms and their charge is $Q=1.6^{-19} \mathrm{C}$. The velocity of the atoms is $v=5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and the magnetic filed is $B=1 \mathrm{~T}$.
a) Give the distance d between the two isotopes when they collide into the detector! 7 points
b) How much energy do they gain from the magnetic field? 3 points
c) Give the magnitude of the force on the two isotopes!

5 points

2. There is a long vertical rail on which a rod with mass of $m=0.01 \mathrm{~kg}$ can slide without any friction. The resistivity of the rod is $R=0.1 \Omega$, and the distance of the rail is $d=0.1 \mathrm{~m}$. The uniform magnetic field of $B=0.1 \mathrm{~T}$ is perpendicular to the plane of the rail.

a) How large voltage V must be applied in order to keep the rod at rest?

5 points

b) How large will the maximum of the velocity of the rod be if only the half of that voltage is applied? 5 points
c) How large is the current at maximum velocity? 5 points
3. A network of serially connected resistor, inductor and capacitor is shown by the figure. The amplitude of the voltage of the power supply is $V=50 \mathrm{~V}$ the voltage on the resistor is $V_{R}=40 \mathrm{~V}$.

a) Give the impedance of the system!
5 points
b) How much power is dissipated on the system?
5 points
c) Find ω of the AC voltage!
5 points
4. There is a prism as it is given by the Figure. A purple ray which is a mixture of red and blue colour goes perpendicularly to the prism. The indices of refraction of the prism for the red and blue colours are $n_{\text {red }}=1.38$ and $n_{\text {blue }}=1.43$, respectively, and the index of refraction of the air is $n_{\text {air }}=1$ for both colours.
a) Which colour can be seen at side a.) and at side b.)?

7 points
b) Under which angle can the different colours be seen? 8 points

a.)
b.)

$0-20$	1
$21-30$	2
$31-40$	3
$41-50$	4
$51-60$	5

