Problems

1. A positively charged particle is moving in the presence of uniform magnetic field. The charge of the particle is $Q=10^{-6} \mathrm{C}$ and the magnetic field vector is $\vec{B}=(0,0,0.5 T)$.
a.) The velocity vector of the particle at $t=0$ is $\vec{v}_{1}=(3 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}, 0)$ and at $t=1 s$ it is $\vec{v}_{2}=(4 \mathrm{~m} / \mathrm{s},-3 \mathrm{~m} / \mathrm{s}, 0)$. At what time will the velocity of the particle be the same as it was at the beginning? 5 points
c.) How large is the angular velocity of the particle?

5 points
c.) How large is the mass of the particle?

5 points
2. There are two long straight wires on which two metal rods can slide without friction. One of them is connected to the wall by a rope the other one can slide freely on the rail. The resistivity of the 1 . and 2. rods are $R_{1}=1 \Omega$ and $R_{2}=0.5 \Omega$, respectively and the distance between the wires is $d=0.1 \mathrm{~m}$.

a.) One of the rods is moving with a constant velocity of $v=10 \mathrm{~m} / \mathrm{s}$ in the presence of uniform magnetic field of $B=0.5 T$ which is perpendicular to the plane of the rail. How much force must on the 2. rod be exerted in order to keep its velocity constant? 5 points
b.) How large is the current through the rods?

5 points
c.) Give the voltages on the rods!

5 points
3. An electric motor can be treated as a serially connected inductor and resistor. In our case the resistivity of the motor is $R=400 \Omega$ and its inductivity is $L=0.954 \mathrm{H}$. The motor is connected to the $230 \mathrm{~V}, 50 \mathrm{~Hz}$ power-line.
a.) Give the power dissipated on the motor ?
b.) How much power will on the motor be dissipated if a capacitor of $C=1.05 \times 10^{-5}$ is connected serially to it?
c.) Give the voltage on the motor in case b !
4. There are 250 lines in 1 mm of an optical grating. The wavelength of the incoming beam is $\lambda=4 \times 10^{-7} \mathrm{~m}$.
a.) Give the position of the first maximum! 5 points
b.) Give the position of the first minimum! 5 points
c.) How many maximum are there in the diffraction pattern? 5 points

$0-20$	1
$21-30$	2
$31-40$	3
$41-50$	4
$51-60$	5

