Electricity Exam

Name:
Number of points:

1. Problem

20 points
An electron is passing through a rectangular area where uniform magnetic field of $B=1 T$ perpendicular to the plane of the paper is present. The width of the rectangle is $d=5 \mathrm{~mm}$ and the velocity, mass and charge of the electron is $v=10^{7} \mathrm{~m} / \mathrm{s}, \mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$ and $q=-1.6 \times 10^{-19} C$.

2. Problem

20 points
A wire is carrying a current of $I=10 A$ in the presence of uniform magnetic field as it is shown in the figure. Find the force on the wire!

$$
\begin{aligned}
r & =0.25 m \\
\alpha & =60^{\circ}
\end{aligned}
$$

3. Problem

20 points
A circular wire frame is moving through a rectangular area where uniform magnetic field perpendicular to the plane of the paper is present. How much charge passed through a crossection of the wire during the motion? $a=0.3 \mathrm{~m}, d=0.6 \mathrm{~m}, r=0.1 \mathrm{~m}, v=10 \mathrm{~m} / \mathrm{s}$

4. Problem

20 points
A small metal rod in the figure below can slide on a rail without friction. There is a uniform magnetic filed of $B=1 T$ perpendicular to the plane of the rail is present. The distance between the tracks is $d=0.1 \mathrm{~m}$ and the resistance of the resistor is $R=0.1 \Omega$. Find the maximal speed of the rod if a constant force of $F=5 N$ is acting on it!

5. Problem

20 points
The network given in the figure below is connected to a A.C. power supply. The frequency and the amplitude of the voltage of the power supply are $f=400 \mathrm{~Hz}$ and $V=100 \mathrm{~V}$, respectively. The amplitude of the voltage on the resistor is also $V_{R}=100 \mathrm{~V}$. The current through the system is $I=1 \mathrm{~A}$.
a.) Find the impedance of the system!
a.) How much power is dissipated on the system?
a.) Give the resistance of the resistor!
a.) Give the voltage on the capacitor and on the coil if the capacitance of the capacitor is $C=1.6 \mu F$!

