Optics Exam

Number of points:

Problems

1. There are two metal rod can slide on a rail in the presence of uniform magnetic field perpendicular to the plane of the paper. A force of $F_{1}=10 \mathrm{~N}$ has to be exerted on the first rod in order to move it with a constant velocity of $v_{1}=10 \mathrm{~m} / \mathrm{s}$. How much force must be exerted on the other rod in order to move it with a constant velocity of $v_{2}=20 \mathrm{~m} / \mathrm{s}$? Find the currents through the rods if their resistance is $R=0.1 \Omega$ and the magnetic field is $B=1 T$!

20 points

2. A charged particle is moving in the presence of uniform magnetic field of $B=(0,0,1 T)$. Its initial velocity vector is $v=(10 \mathrm{~m} / \mathrm{s}, 0,0)$.
a.) How large will the speed of the particle be in $t=10 \mathrm{~s}$?

10 points
b.) The mass of the particle is $m=10^{-4} \mathrm{~kg}$ and its charge is $Q=10^{-4} C$. How large is the radius of the motion?

10 points
3. In the figure the amplitudes of the voltage on the resistor V_{R}, on the capacitor V_{C} and on the coil V_{L} are shown as a function of the frequency for a serially connected RLC system.

a.) Identify the curves belonging to V_{R}, V_{C} and V_{L} !

4 points
b.) How large is the resonance frequency? 4 points
c.) Give the amplitude of the voltage of the power supply! 4 points
d.) At the resonance frequency the inductive reactance of the coil is $L \omega=$ 250Ω. How large is the resistance of the resistor?

4 points
e.) How much power is dissipated on the system?

4 points
4. A lamp is designed for $V_{1}=110 \mathrm{~V}$ power line. Using this voltage its power is $P_{1}=110 \mathrm{~W}$. We would like to use it in the case of $V_{2}=230 \mathrm{~V}$ power line. Give the capacitance of the capacitor which should connect serially to the lamp if the frequency of the power line is $f=50 \mathrm{Hz!} 20$ points
5. Find the force acting on the wire in the figure below! \mathbf{B} is uniform! 20 points

$$
I=10 \mathrm{~A}, \quad R=0.1 \mathrm{~m}, \quad B=0.5 \mathrm{~T}
$$

