Optics Exam

Problems

1. A particle with a mass of $m=10^{-4} \mathrm{~kg}$ and with a charge of $Q=10^{-4} \mathrm{C}$ is moving in the presence of uniform magnetic and uniform electric field with constant velocity on a straight line. The components of the electric field and the velocity are $\vec{E}=(12 \mathrm{~N} / \mathrm{c} ; 0 ; 0)$ and $\vec{v}=(0 ; 20 \mathrm{~m} / \mathrm{s} ; 0)$.
a.) How large is the sum of the forces acting on the particle? 3 points
b.) Give the force vector due to the electric field!
c.) Give the Lorentz force and the magnetic field vector!
d.) Can the magnitude of the magnetic filed be $B=1 T$?
e.) What kind of motion will the particle have if the electric field is switched off? Give the axis of the motion!
f.) Give the radius of that motion!

4 points
2. There is two long straight wires carrying a currents of $I_{1}=10 \mathrm{~A}$ and $I_{2}=20 \mathrm{~A}$, respectively. The distance between the wires is $d=0.3 \mathrm{~m}$.
a.) How large is the force on a $1 m$ segment of the wire carrying current of I_{2} ?

6 points
b.) Give the position of a third wire parallel to the others if the sum of the forces acting on it is zero! 7 points
b.) How large is the current in the third wire if the magnetic field at the place of the 2 nd wire is zero! 7 points

3. A small metal rod can slide without friction on a rail as it is shown in the figure. A force of $F=1 N$ must be exerted on the rod to keep it at rest if the voltage of the battery is $V=10 \mathrm{~V}$.
a.) Give the electric current through the rod! 8 points
b.) Give the maximum of the velocity of the rod after releasing it!

8 points
c.) How large is the current through the rod at that case!

4 points

4. In order to use a lamp in a 230 V power line which is originally designed for 110 V we apply serially a capacitor. The resistance of the lamp is $R=1000 \Omega$, how large must the capacitance of the capacitor be?

5. We have two electric components. One of them is a resistor with the resistance of $R=300 \Omega$. Unfortunately the description of the other component is disappeared. It can be a resistor, a capacitor or a coil. The two components are serially connected and the voltage can be measured on the resistor as a function of ω is shown in the Figure.

a.) What is the second component?
6 points
b.) Give the parameter of the second component!
7 points
c.) How large is the amplitude of the power supply?
7 points

