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Granular packings of hard discs are investigated by means of contact dynamics which is an appro-
priate technique to explore the allowed force-realizations in the space of contact forces. Configura-
tions are generated for given values of the friction coefficient, and then an ensemble of equilibrium
forces is found for fixed contacts. We study the force fluctuations within this ensemble. In the
limit of zero friction the fluctuations vanish in accordance with the isostaticity of the packing. The
magnitude of the fluctuations has a non-monotonous friction dependence. The increase for small
friction can be attributed to the opening of the angle of the Coulomb cone, while the decrease as
friction increases is due to the reduction of connectivity of the contact-network, leading to local,
independent clusters of indeterminacy. We discuss the relevance of indeterminacy to packings of
deformable particles and to the mechanical response properties.

Jamming [1] has been in the focus of recent studies
because it occurs in a great variety of phenomena like
structural and spin glasses, colloidal systems, vehicular
traffic and granular media. The characterization of the
jammed state is therefore crucial and can perhaps be best
achieved in granular systems. Many intriguing proper-
ties of granular packings originate from the microscopic
force transmission through a contact structure, where
non-linearity and disorder are known to be crucial. It
is an essential but not resolved question how the highly
inhomogeneous force-network influences the macroscopic
stress transmission in dense granular media.

Since the deformations of the grains are usually much
smaller than their size, a very useful reference system for
granular matter is that of rigid (undeformable) particles
[1-4]. Tt is known that random packings of frictional
rigid disks or spheres exhibit a hyperstatic structure [5—
7]: the number of the linear equilibrium equations of the
grains, which relate the unknown contact forces to the
external load, is too small to determine the contact forces
uniquely. Therefore many mechanically admissible force-
networks are possible in the same packing geometry and
for the same external load, which define an ensemble of
force-configurations.

This ensemble recently has received much attention
[6, 8-14] due to the idea that some macroscopic proper-
ties of jammed granular systems can be derived based on
an ensemble average over the admissible force-states [8].
The determination of force distribution in [9] or Green
function in [10] are based on this approach.

Another interesting aspect of the force-ensemble is re-
lated to the behavior of the system under external per-
turbations. Packing structures where contact forces are
unique or strongly restricted appear to be fragile: slight
change of the load can cause rearrangements of the parti-

cles [15, 16]. The question arises whether a packing that
exhibits many possible realizations of equilibrium forces
becomes more robust against perturbations.

The results of this Letter provide nontrivial informa-
tion also for packings of deformable particles: The actual
network of contact forces (which is uniquely determined
by the elastic deformations) must be contained in the
force-ensemble calculated for the same contact geometry
assuming the particles (in their deformed shape) would
be perfectly rigid. Moreover, for a finite system of suffi-
ciently rigid particles the contact geometry can be arbi-
trarily close to the ideal one obtained for perfect rigidity.
Which of the solutions in the force ensemble is realized,
depends e.g. on the elasticity of the individual grains.
Here we address the question, how strong the restrictions
provided by the force ensemble are.

Again another but closely related issue is that of hard
particle simulations, where the dynamics is seemingly
ambiguous due to the indeterminacy of forces [13].

The above problems indicate the significance of the
force-ensemble, however very little is known about its
properties. In this Letter some characteristics of the en-
semble are revealed, where emphasis is put on the influ-
ence of friction.

In the recent literature [9, 10] it was suggested that
all elements in the ensemble of admissible force configu-
rations are realized with equal probability. This micro-
canonical approach can be regarded as a restricted ver-
sion [23] of the Edwards ensemble [1-3]. In the following
we also address the validity of this assumption.

Let us consider n rigid, cohesionless disks. A configu-
ration of the contact forces {F;} (where i is the contact
index) is called admissible or a solution if two conditions
are fulfilled: the equilibrium and the Coulomb conditions.
The first one requires force and torque balance at each



grain, while the Coulomb condition reads:

[(Fa),| < (Fi),, (1)

for the normal and tangential force at each contact, where
w is the friction coefficient. For p > 0 no additional
condition is needed to exclude tensile forces.

Next we show that the solutions form a convex set.
The space of contact forces F is defined (for fixed con-
tact network) as an N, X d dimensional vector space,
where each point represents a force-configuration {F;}.
N, is the number of contacts, and d the space dimen-
sion (i.e. each contact force component represents one
degree of freedom). Let S be the subset of admissible
states in F under some fixed external forces. For a reg-
ular packing of disks & is known to be a convex polyhe-
dron [11] but it is easy to see that convexity is satisfied
in any case: shape of the particles, disorder, dimension-
ality or friction do not matter. Convexity means that
if {F;} and {F; + AF;} are solutions then {F; + AAF;}
is a solution as well for 0 < A < 1. First, the equi-
librium condition holds: Both given force-configurations
provide equilibrium against the external load, thus their
difference {AF;} corresponds to zero load and exerts no
total force or torque on the particles. Therefore it can be
scaled freely (unrestricted A) and added to an admissible
state, that does not violate the linear equilibrium equa-
tions. Second, the Coulomb condition is satisfied simply
because for each contact ¢ the d-dimensional Coulomb
“cone” is a convex set and therefore must contain the
component F; + AAF;, with 0 < X\ < 1.

The solution set S reflects basically the properties of
the contact-network, therefore when studying S it is cru-
cial what kind of packing structure is considered. In
real processes which lead to jamming, the microscopic
structure is not prescribed but develops spontaneously
up to the point, where further rearrangements against
outer driving forces are blocked. This self-organized tex-
ture is an important feature of granular materials [15]
which is disregarded in models using, e.g., regular ar-
rangements [11, 12]. Therefore the packings studied be-
low were constructed with discrete element simulations
where the particles obeying Newton’s dynamics build up
the contact-network in a compression process. In these
jammed configurations we search for various solutions of
the contact forces and study the influence of friction on
the properties of S.

A detailed description of our method of con-
structing the packings and exploring admissible force-
configurations can be found in [6], here only a short
review is given. With the help of the contact dynam-
ics algorithm [17, 18] a 2D system of 200 rigid disks is
compressed along the vertical axis between two horizon-
tal plates. Horizontally periodic boundary conditions are
applied, gravity is set to zero, disk radii are uniformly dis-
tributed between R and 2R, the horizontal system width
is 42R. We wait till the packing jams (relaxes into equi-
librium) under the constant force of compression. Then,
to avoid the effect of the straight plates, only the mid-

dle part of the static configuration is considered for fur-
ther investigation: this is a horizontal slice of height 28 R
throughout the whole width in the bulk away from the
plates. We retain the contact forces at the top and bot-
tom perimeter of the slice as fixed boundary forces, thus
they provide the external load on the system. The plates
and the disks outside the slice can be left away.

After that the exploration of the admissible force-
solutions follows for this fixed arrangement of disks. We
start with the force state that appeared at the jam-
ming and perturb all contact forces randomly [24], which
leads out of equilibrium and violates the Coulomb con-
dition. This perturbed state serves as the input for the
Gauss-Seidel-like iterative solver of the contact dynam-
ics method. This iterative algorithm lets the forces relax
into a consistent state, providing a (possibly) new so-
lution [6, 18]. The perturbation and relaxation can be
repeated many times always starting from the last solu-
tion (a kind of random walk in the force space); in that
way it is possible to sample points from S.

Based on this collection of force solutions we can assess
the differences between admissible states and study the
problem of force indeterminacy. The main feature of S
that we found in these self-organized structures is that
the admissible force-networks are rather similar: The
pattern of strong force lines changes little from one re-
alization to the other, showing that the contact-network
imposes strong restrictions on the force-configuration.

For each contact force F; its variance (§F;)? is calcu-
lated over the measured realizations. The ratio

n=(0F)/(|F|) (2)

represents the ensemble fluctuation in S, thus it can be
regarded as a measure of ambiguity of the forces. ()
means the average over all contacts. The force ambiguity
7 has to be distinguished from the degree of indetermi-
nacy which refers to the dimension of the affine subspace
of force configurations solving the equilibrium conditions
(without the restrictions due to the Coulomb cones).

To investigate the effect of friction a new packing
is constructed for each value of p before sampling the
solutions. The force ambiguity 7 is plotted in Fig. 1
(full circles). Values of n around 10~7 reflect the ac-
curacy level of our calculation and the corresponding
force-configurations can be regarded as identical with
this tolerance. In the zero friction limit the force am-
biguity disappears confirming isostaticity of frictionless
packings [7, 19, 20]. For small p the force ambiguity
grows proportionally with friction, however for larger p
it decreases again. The largest ambiguity of the forces
is found around p = 0.1. Despite the further opening of
the Coulomb angle fluctuations are getting smaller, even
fully determined states are found for strong friction.

The behavior of n results from two competing effects:
first, increasing friction provides larger freedom locally
for the tangential forces, second, it also stabilizes the
system in a less dense state [21] causing lower connectiv-
ity of the contact-network (open circles in Fig. 1), which
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FIG. 1: Force ambiguity n (full circles) and average coordi-
nation number z (open circles) as functions of the friction
coefficient . For comparison, squares connected by line show
the 1 values for a configuration of disks that was constructed
without friction.

reduces force ambiguity. One can separate the two effects
by fixing the configuration and letting the Coulomb an-
gle alone influence 7: We generated one packing without
friction but switched on friction before sampling force-
configurations. The results obtained this way (squares in
Fig. 1) provide monotonously increasing fluctuations, as
expected. Compared to the original data (full circles) de-
viations appear only on the right side of the figure, where
the changes in the connectivity become important, while
the behavior on the left side is governed by the first ef-
fect. For small i the average coordination number of the
configuration is essentially the same as in the friction-
less case, where from isostaticity N, ~ 2n follows. This
gives us the degree of indeterminacy: 2N, — 3n = N./2,
since there are two unknown force components per con-
tact and three equations per disk due to force and torque
balance. Thus we conclude that for tiny friction there is
a small but high-dimensional set of force-solutions in the
2N, dimensional force-space, and its size goes to zero
with vanishing friction. Similarly for spheres in three di-
mensions one obtains an N.-dimensional solution set &
within a 3N .-dimensional force space F.

For large p the dimension of § is strongly reduced due
to the decreasing number of contacts. In our small system
we found that dim(S) can reach even zero, allowing only
one single force-configuration. This case corresponds to
the marginal rigidity state found in experiments [22].

The regression of the degrees of freedom occurs in
an interesting way: the indeterminacy gets localized in
space into small subgraphs of the contact-network, which
are surrounded by determined forces, i.e. a relatively
large ambiguity is present but only in a small part of
the system (Fig. 2.b). The pattern of the fluctuation-
bearing contacts can be visualized by plotting the dif-
ference between any two admissible force-configurations.
We found the same subgraphs as in Fig. 2.b also for
other arrangements of boundary forces, showing that this
indeterminacy-pattern is indeed a property of the pack-

FIG. 2: (Color online) The difference between two admissible
force-networks for (a) p = 0.1 (b) 1 = 0.5. Only normal force
differences are indicated with different colors depending on
their sign.

ing texture. Each of the two subgraphs shown in Fig. 2.b
is statically indeterminate, carries only one degree of free-
dom and cannot be reduced further because the deletion
of one particle or one contact would cancel the inter-
nal indeterminacy. We call such subgraphs elementary
clusters. They can be regarded as geometric units of in-
determinacy.

If the connectivity is high the formation of elemen-
tary clusters is more probable, which suggest the follow-
ing picture: For small friction many overlapping elemen-
tary clusters are formed so that two admissible solutions
generically differ throughout the system (Fig. 2.a). As
N, is reduced the density of the elementary clusters p
decreases and the indeterminacy gets localized into small
separated domains. Around p = 1 the density p becomes
so small that only a few elementary clusters are present
due to the finite system size. This explains the strong
scattering of the data for n in Fig. 1.

The spatial localization raises the question of a per-
colation transition. In case of small p the separated
domains carry force-fluctuations independently of each
other, therefore we think that n becomes a well defined
intensive quantity for large systems. However if the inde-
terminacy percolates through the system the overlapping
elementary clusters provide fluctuating boundary forces
for each other, thus the indeterminacy of forces is en-
hanced with growing system size. Simulations up to 500
particles show this size dependence, but it is not clear
what happens in the thermodynamic limit.

Finally we investigate the dynamically created force-
configuration {F; o}, which is determined by the con-
struction history. Our findings indicate that this state
is more “central” than typical points in the solution set:
We generate 20 initial configurations with 4 = 0.01 and
sample for each of them 100 points randomly in S. Their
(vectorial) average is regarded as the center of S. Then
we measure the Euclidean distances ¢ of the sampled
points from the center. The histogram of the distances in
units of their average ¢ is shown in Fig. 3 together with
the histogram of the distances ¢y of the initial, dynam-
ically generated 20 points from the centers of the cor-
responding sets §. The two histograms clearly indicate
that the initial points are closer to the center on aver-
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FIG. 3: Histograms of the distributions of normalized dis-
tances of dynamically generated (full circles) and randomly
sampled (open circles) points in the sets S for p = 0.01. The
inset shows a two dimensional cross section of a high dimen-
sional solution set. The dynamically constructed force state is
marked by the arrow. The white area belongs to S, while out-
side S the gray scale indicates the violation of the Coulomb
condition (darker means smaller violation).

age than the randomly sampled ones. Assuming that the
distribution of the random sampling of S is close to a uni-
form one, we conclude that the force configurations of the
dynamically generated jammed states are not uniformly
distributed in the set S.

That the original force configuration is “closer to the
center” is not in contradiction to the fact that we always
find it at the edge of two dimensional cross sections of the
high dimensional solution set S (see inset of Fig. 3). We

suggest the following physical picture: A contact with
large mobilization of friction (F;/ukF, = 1) is less stable
against perturbations. Near the end of the relaxation
process small collisions “shake” the already established
contacts reducing the possibility that the contact remains
on the verge of sliding. However, the system comes to
rest finally by the marginal fulfillment of the Coulomb
criterion at some contacts.

Our results show a significant difference between dis-
tributions of the solutions sampled by the random walks
plus relaxation and of those relaxed physically. The uni-
formity of the (unbiased) random walk based sampling
cannot be proved due to the high dimensionality of the
problem, however, the distance distribution of the points
should be rather robust just because of this high dimen-
sionality. Therefore we consider the observed discrepancy
though not as a proof but as a strong indication of the
violation of the microcanonical assumption for the phys-
ically realized solutions.

It is expected that the ambiguity of forces for a given
geometry has implications for the mechanical behavior.
We regard the following preliminary result as an indica-
tion of such an effect. For a horizontal layer of hard disks
settled under gravity we applied a point-force downwards
on the free surface, just strong enough to cause local rear-
rangement. We measured the depth of the rearrangement
zone and obtained non-monotonous dependence on pu: It
is larger for small and large friction coefficients, and has a
minimum at p ~ 0.1, right where 7 reaches its maximum.
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