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Para- ferromagnetic phase transition:

T/TC

M/M(T=0)
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Above the Curie temperature TC

(H = 0) there is no spontaneous
magnetization (paramagnetic

phase). 
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Spont. mg.

Low temperature phase: Broken symmetry.
Order parameter: Normalized magnetization

Phase diagram:

T/TC1

H
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First order transitions are 
discontinuous: The order para-

meter changes discontinuously

at the transition:
OP

T

Second order transitions

are continuous:

OP

TTC

The continuous transition point is also called critical point (c.f. 

liquid-gas transitions) and the related phenomena are
critical phenomena:

1. Many physical quantities show power law behavior
2. Critical behavior of different systems can be ordered into

universality classes, which can be identified by the critical

exponents



E.g., he correlation function in a magnetic system is:

Where s is the local magnetic moment („spin”), and the bracket

means thermal average.

Close to the critical point it behaves like:

where is the correlation length.

The correlation length, i.e., the characteristic size of the
regions, where the fluctuations are correlated diverges at the

critical point, T = TC and h = 0 (h is the external field.)

ν and η critical exponents.



Near to the critical point G is a generalized homogeneous

function of its variables:

G G

Where t = (T – TC) / TC is the reduced temperature. The 

notation of the exponents follows the conventions. We will use
the following relationships:
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M: magnetization (OP), χ:  susceptibility C: specific heat



We have altogether 8 exponents (α,β,γ,δ,η,ν,yt, yh)

yt = 1/ ν, yh = d - β/ν,

Scaling relations:

Two independent exponents to

identify universality classes

Starting from the generalized homogeneity of G, we obtain:



COMPUTATIONAL PHYSICS

A new, third methodoligical branch of physics, beside
theoretical and experimental physics

EP

TP CP

Computational physics: When the MAIN tool of investigating

nature is the computer. It operates on models, like
theoretical, but analyses data like experimental physics.



Statistical

analysis

Data 

collection

RunMeasurement

ModelSample

DebuggingCalibration

ProgramApparatus

AlgorithmPrinciple of 

measurement

SimulationsExperiments



Basic problem of equilibrium statistical physics: Calculate
averages

Simulations: 
1. „Do what nature does” � calculate temporal averages

2. Make use of stat. phys.: ∑>=<
i

eq

ii PAA

Method 1 is „Molecular dynamics”

2 is „Monte Carlo method”

We start with investigating the equilibrium properties of 

macroscopic systems. If the characteristic length ξ << L, 
where L is the linear size of the system we can symulate, 
no much difference between the finite size and the TDL is 

expected. The opposite situation is more interesting.



MC trivially needs random numbers.

Although – in principle – MD is fully deterministic rn-s are
needed there too, at least for the initial conditions.

Very large systems have to be simulated.

Program efficiency is crucial!

We need many „good” random numbers!

Many: They have to be generated on the computer.
I.e., they cannot be random: 

Pseudo-random number generators

Algorithms, which produce sequences of numbers r ∈∈∈∈ (0,1) with
behaviors similar to those of uniformly distributed, independent

random numbers.



Most high level languages (C, C++, FORTRAN…) and 

programing environments (MATHLAB, R…) provide System 
Supplied RNG-s

DANGEROUS!

General remark: It is good to know what the compouter does!

„Portable RNG-s”

1. Multiplicative congruential algorithm

caII jj +=+1 )mod(m

Needs 3 parameters (a, c, m) and – as all RNG-s – a seed, I0

mIr jj /11 ++ = Normalization to (0,1)



A simple and efficient version: 
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On a 32 bit machine, where the maximum integer is just m, 

if integer overflow does not cause fatal error the remaining
digits are just the appropriate ones:

… X a1 1 11 0 0 0 0 0

sign bit
It may happen that the sign bit becomes 1

Automatic type declaration: Variables
with first letter I,J,K,L,M,N are integers
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This has to be normalized:

mr j /)FLOAT(I 1j1 ++ =

In many applications a little trick helps to save time:

Transfer the MC decisions betwenn 0 and m, instead of 
using numbers (0,1).

Is this a good RNG? Density function: 

Test:

- moments
- correlation functions and ratios

- Fourier spectra
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Most RNG-s pass these tests well.

More sophisticated tests of correlations needed. Marsaglia effect

Let us fill an Ld d-dimensional lattice using RNG!

IX1=L*RND(IJK)+1

IX2=L*RND(IJK)+1

.

.

IXD=L*RND(IJK)+1

If a point is hit, we consider it occupied. Let N(t) be the # of 

empty points at time t, where time is measured with trials. 
N(t) should approximately follow an exponential decay.

The Marsaglia effect is that for all congruential multiplicative

generators there will be unavailable points (on hyperplanes) 

if d is large enough.



N/Ld

t
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This trouble is easy to overcome by putting all the points

into a single index array of size L3D = L3 (in three
dimensions):

I3D=L3D*RND(IJK)+1

IZ=I3D/L2D

IY=(I3D-IZ*L2D)/L

IX=I3D-IZ*L2D-IY*L

However, the M-effect indicates correlations!

IBM: m = 65539 bad already in d = 3!



Tausworth (shift register, Kirkpatrick-Stoll) generator

Instead of 1, it has 250 integer random numbers as seeds.
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Where XOR(L,M) means bitwise exclusive or between L and M
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This generator is not perfect either. Ziff discovered short

range correlations. There is no „good” generator, it depends
on the purpose, which one is appropriate.

Two tricks: Warm up the RNG (folklore: throw away ~10000 
numbers). Mix different RNG-s (helps also to increase cycle). 



Random numbers with distributions different from uniform

Starting point: We have a „good” RNG generating independent
uniformly distributed random numbers between (0,1)

Let P(x) be the prob. density function we are interested in.

The probability distribution is ∫
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Generate random numbers r ∈∈∈∈ (0,1). Then D-1(r) will be 
distributed according to P(x).



Normally distributed random numbers
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Box-Müller method:

Generate two independent, uniformly distributed random 

numbers r1 ,r2 ∈∈∈∈ (0,1). We obtain two normally distributed
numbers:
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Radial symmetry � 1d distribution


