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a) Free BC. Particles (spins) have no interaction outside the box.
The walls have to be specified (e.g., 

elastic). For lattice models 
interactions are cut at the boundaries

For small systems strong boundary effects leading to 

spurious behavior

Physics problem � model � algorithm 

Depending on the computational capacity:
Sample size, # of runs 

Boundary conditions (BC)



b) Periodic BC. The opposite d-1 dimensional boundaries of 

the d-dimensional box are defined as neighbors.

In d = 2 this corresponds

to putting the system onto

a torus:

No boundary effects
(But finite size effects are there!)



c) Helical boundary conditions. The opposite parts are shifted 

and glued together

No boundary effects either.
Advantage: If information about a lattice is stored in an array 

of one variable, no special measures needed at the end of the 

rows (no „if” decisions or copying 1st and last rows).
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d) Physical boundary conditions. Special BC-s may reflect 

physical situations. E.g., equilibrium interface fluctuations can 
be studied in an Ising model, where the two domains are 

prepared by the BC-s. The Ising model in zero external field is:

H

where Si is an Ising „spin” with two possible states (+1 or -1).
In the homogeneous case all Jij-s are equal.

M>0M<0

Schematic!



Basic approaches to calculating thermodynamic averages:

1. Molecular dynamics (MD). We try to reproduce what nature 

does: Solution of the equations of motion. Temporal 
averages can be calculated from the trajectories of the 

particles.

2. Monte Carlo (MC) method. We start from the equivalence of 
temporal and ensemble averages:
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However, the explicit calculation of is difficult, it contains 

information about the partition function – i.e., the solution of 

the problem. Moreover, the distributions of statistical physics 
are sharply peaked, therefore most trials in a simple sampling 

will lead to zero contributions. Therefore we will use 
„importance sampling”, such that we generate a sequence of 

configurations according to their equilibrium statistical weights. 

This sequence defines an „artificial” time.
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This way even MC averages are calculated as temporal 

averages.

Let us consider a dynamic quantity A (energy, kinetic energy, 

magnetization etc.) for which we are interested in the 
equilibrium expectation value.

First we have to decide if the system is already in equilibrium.

Equilibrium means stationarity, so we have to find indicators for 

this. A good candidate is just the total energy of the system 
and its moments.
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Measurements are time consuming.

Consecutive configurations are strongly correlated – no new 
information in the time integral.

Define correlation time τ through the time dependent corr. fn.
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Sampling is reasonable in intervals > τ. Only in this case can 
be expected that accuracy increases with the number N of 

sampling points as N/1

Characteristic length and time finite only off the critical point.

What if we are interested in critical behavior?



Finite size scaling (FSS)

Close to the critical point it behaves like:

where is the correlation length.
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Far from the critical point ξξξξ << L, the behavior is similar to that of 
the bulk equilibrium in the TDL: no pronounced L-dependence

Near to the critical point ξξξξ >> L: strong L-dependence

How to find TDL behavior? Use just this L-dependence! E.g., for 

the susceptibility in a PM-FM transition:
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The deviation of the finite size 

behavior from that of the TDL 

is charaterized by th

shift ∆∆∆∆(L)

and the width σσσσ(L)

These quantities are not defined 

uniquely but simple factors do 
not matter (scaling is important)



In a finite size sample the linear size L will 

play the role of the correlation length, if ξξξξ exceeds L. The 
characteristic temperature, where this happens is

LL (L)

If we accept that there is only one characteristic size in the 

TDL, then there is only one characteristic temperature regime 
in the finite size system, where significant deviations from the

TDL can be seen. It follows that

∆∆∆∆(L) ~ L-1/νννν

σσσσ(L) ~ L-1/νννν (*)

We measure σσσσ and L and have to calculate Tc and νννν
Fortunately (*) does not depend on Tc



log L

log σσσσ

1
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Determination of νννν

Using νννν we can calculate Tc(∞∞∞∞)

Tc(L)

L-1/νννν

Tc(∞∞∞∞)

The straightness of the 
extrapolation line is a check of 

the goodness of νννν



In critical phenomena we have usually two 

independent exponents: One more is needed

The generalized homogeneity assumption for the correlation 
function implies that (the critical part) of the susceptibility is 

also a gen. hom. fn. of its variables:
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Let us extend the homogeneity assumption (*) to the variable L! 
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LL = I.e., measuring χχχχ at the critical 
point, we can calculate νννν



Similarly for any quantity, which has the critical behavior in TDL

, we have for finite size systems at the critical point ~)0,(
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If precise enough data are available the scaling is not so nice:
the lines on the log-log plots bend. This is because the simple 

power law scalings are valid only asymptotically and what we 
measure by linear fits are „effective exponents”. Since we can 

never reach „Asymptotia”, there will be corrections to scaling:
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The numerical handling of these 
corrections is a major challenge.



Cluster counting and critical behavior in percolation

We have a mixture of conducting and insulating grains and 

are interested in the electrical properties of this ensemble. Or
monomers build a three dimensional web by random link 

formations and we are interested in when the whole gets 

interconnected (gelation). In these (and many other) 
problems disorder plays a crucial role. A paradigmatic model 

is: Percolation.
Let us take a square lattice where the lattice sites can have 

two states: Occupied/empty, conducting/insulating, 
black/white etc. We occupy these sites with an uncorrelated 

probability p (occupation probability). The configurations will 

depend on this control parameter p.



Although the sites are independently occupied we ask particular 
questions about these systems such that the related behavior is 

highly non-linear. The questions are about the connectivity 

properties of such random systems. We define a cluster as a set 
of points, which can be mutually reached from each other using 

only nearest neighbor paths through occupied sites. If p is small, 
we have only small clusters. At the other extreme, we have 

almost a giant connect part, with some finite clusters and 
clusters of empty sites. The giant component becomes infinitely 

large in the TDL (L � ∞∞∞∞, p = const). 
Naturally we can assume that there is a transition at pc from the 
state, where there is no infinite cluster to that where there is. 

The indicator (order parameter) is: the percolation 
probability, which is the probability that an occupied site belongs 

to the infinite cluster.
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A basic quantity is the number of s-size clusters per site: ns

N
ns

clustes size-s of #
= where N = Ld is the total number of sites.

The probability that an occupied site belongs to a cluster of 

size s is     . Therefore the following equation is valid:ss snp =
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There is an intimate relationship between thermal critical pheno-

mena and the percolation transition, which can be established 

using the theory of diluted magnets as well as that of the Potts
magnetic models. corresponds to the magnetization (order 

parameter), S to the susceptibility with p being the control 
parameter (~temperature). There is possibility to introduce the 

analogue of the magnetic field (ghost site).
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The connectivity function G(r) is the probability that two 

occupied sites belong to the same finite cluster. It is a 
generalized function of its variables and the connectivity 

length ξξξξ diverges at pc as
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where even the notation reminds to the thermal phase transitions. 

Then it is not surprising that we have:
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indicating that S plays the role of the susceptibility (no wonder, 
it contains the second moment of ns. 

The key task in simulating percolation systems is cluster 

counting, i.e., calculating ns-s.


