
Simulations in Statistical Physics

Course for MSc physics students

János Kertész

Lecture 4

p =0.3 p=0.58

p =0.6 p =0.8

Task: Given a set of occupied sites in a d-dimensional lattice

identify and count the clusters!

2

4

2

3

2

2

2

1 /1 /1 /1 /2 LnLnLnLn ====

The Hoshen-Kopelman algorithm

identifies the clusters, determines their
sizes by sweeping through the lattice once as a typewriter

(starting top left and ending bottom right).

Let us store the information about the lattice is stored in the

array IS(I,J), where I and J go from 1 to L. (For simplicity we
introduce the algorithm in d=2, the generalization to higher

dimensions is straightforward. IS(I,J) = 1 if the site is

occupied and IS(I,J) = 0 if it is emty.
Clusters are labeled by a variable LABEL(I,J).

When we go through the lattice, we open a new cluster
label, whenever there is neither occupied upper nor left

neighbor.

Clusters like that with label 5 are problematic!

Book keeping using the array KLASS(LAB) with label

arguments.

Lattice Aim (+ size of the cluster

with label LAB)

KLASS(LAB) contains info about
i) If LAB is a true label and in this case about the size of the

cluster (KLASS(LAB)>0)

ii) If LAB is not a proper one, which is its ancestor LABN:
(KLASS(LAB)=-LABN) But LABN may not be a proper label so

repeat procedure…

a) If the site is unoccupied we set label L2

At an occupied (bulk) site we have to look only at the left and

upper neighbor.
b) If none are occupied, open a new label NL, and KLASS(LN)=1

If only left neighbor is occupied, take its label over (it was a true
label and nothing happened since then)

c) If the only the upper neighbor is occupied with label LAB search
for the root label with LT=KLASS(-KLASS(-KLASS(-…(LAB))))

until a positive label is found. Take that label, as proper, increas

KLASS(LN) by one, and declare KLASS(LAB)=-LT
d) If both upper and left are occupied, look at the root label of the

upper, take the smaller and unify the two clusters.

d=2

1

1 1

1

1

1

1

1

1 1 1

2 2

233

2

2

new labels NL

NL=NL+1

KLASS(NL)=1

Status:
KLASS(1)=4

KLASS(2)=4

KLASS(3)=2
Action:

KLASS(2)=
KLASS(2)+KLASS(3)+1

KLASS(3)=-2

1

14 4 4

KLASS(2)=-1 etc

Status: KLASS(4)=3, KLASS(1)=20…

Action KLASS(1)=KLASS(1)+KLASS(4)+1
KLASS(4)=-1

(The Hoshen-Kopelman algorithm is an example of the Union-

Find algorithms, which find equivalence classes by efficient

book keeping. More general U-F is needed, e.g., for cluster
check on an arbitrary graph.)

Computational demand is little (log) more than linear in Ld

(because of the search for the root labels).

Having gone through the sample, the 0<labels<LABMAX will be
the identifiers of the clusters, and the corresponding KLASS

values will tell the sizes. Thus a statistics about cluster sizes are

trivially obtained.

It is convenient to introduce helical BC-s. The first and last raws
can be easily connected by going through once more the first

raw with imagining that the last one is its upper neighbor.

The cluster numbers follow also a scaling form and right at the

critical point they have a power law decay τ−
sns ~

Sometimes we ask only, whether there is an occupied path

through the sample. This question can be handled by a simplified
H-K algorithm:

We give all the occupied sites in the first raw the label 1

Then we apply HK and check in every raw whether the true label
1 has occurred. If it does in the last raw – the sample „conducts”;

if in any of the rows the check fails we stop the search with that
sample.

For random percolation the memory demand can be substantially

decreased. We occupy the sample simultaneously with the cluster

check. The decision about occupation is done by comparing a
generated random number with p. If r < p the site is

occupied, otherwise it is empty. This decision is made when we
first visit the site. And since we never see it again if it has been

checked from below, we put new information into the
corresponding array element. This way only an array of Ld-1+1

elements is needed to store the information about occupation.

)1,0(∈r

What is the finite size critical point (percolation threshold)? It is

not uniquely defined. E.g., the average p where the samples
start percolating. How to calculate?

One possibility is to generate many samples, check percolation
and take the ratio R(p, L) of # of percolating samples to all. The

obtained curve will be:

p

R(p,L)

1

1

R is the probability distribution that

a sample percolates. P(p, L)=dR/dp

is the probability that a sample

starts percolating between p and

p+dp. pc(L)=<p>P over this density
seems to be a good definition.

Can we calculate P(p, L) directly?
Or pc(L) directly?

In order to find pc for one particular arrangement, we need to fill

up the sample gradually. This takes too long time.

Make use of the fact that the sequence of random numbers will
be the same if the seed is the same. Start from a seed and a p

and use dichotomic confinement.

0 1

In the n-th step, move back with (1/2)n if the sample percolates,

move forward if not

Use always the same seed � find the actual pc(sample)

with (1/2)n precision.
Take an average over pc(sample) � pc(L)

and calculate standard deviation σσσσ(L) use FSS

log L

log σσσσ

1

1/νννν

L-1/νννν

pc(L)

How to get another independent exponent? E.g.,

β
)(~ cppP −∞ FSS:

νβ /
~),(

−
∞ LLpP c

pc

What is on a finite lattice? One
possible definition: The relative

weight of the largest cluster. This

will not be 0 for
p< pc, but increases sharply from pc

∞P

p

smax(L)/N

L

1

1

FSS for ∞P

log L

log smax(pc,L)/N

1

β/ν

How does the size of
the largest cluster at pc

scale with L?

νβ

νβ

/

max

/

max

~

~/

−

−

=
d

d

Ls

LN

LNs

Usually the mass scales with Ld , this is, e.g., the case for the

larges cluster size above the threshold.
If the mass m of an object scales as , where

dtopological < D < dembedding then the object is a fractal.

D
Lm ~

The „incipient infinite cluster at threshold is a fractal,

νβ /−= dD

Analytical results on percolation:
1d trivial

2d very difficult, but mostly solvable. E.g., 2d exponents

known (νννν = 4/3, ββββ = 5/36). Many thresholds (not universal
quantity!) are known, e.g., triangular site pC = square bond

pC = 1/2.

Directed percolation

Percolation

in strong

N wind
or gravity

This problem is more difficult than ordinary percolation,

because it can be considered as a time dependent process.

Accordingly instead of 2, there are 3 independent exponents:
and these are not known analytically even in

1+1 dimensions (d+1 is a usual notation in this in this case).
However, due to the absence of backflow, this problem is

numerically much simpler than ordinary percolation and the
exponents of 1+1 dimensional directed percolation are known

to highest precision (upt 5-6 digits) among the non-trivial ones.

βνν and ,⊥

How to calculate the critical point and the exponents? Let us deal

with the square lattic (tilted by 45o). We can simulate very large
samples, as we will see.

Imagine that the upper most raw is „wet” and we deal with bond

percolation. The density ρρρρ of wet sites will be less in the next

raw, etc. How does ρρρρ depend on t (we consider the z direction as
time).

Defining we get the result above. If we look at the scaling

with L such as the t – dependence can be ignored (), we can
measure . Finally, z can be measured by measuring how

the length of finite clusters at criticality scale with the width.

log ρρρρ

log t

p<pc

p>pc

Even at pc the plain power

law would not hold forever
on a finite size sample, but

on the very large samples
possible to simulate this

effect is not seen

The critical point can be found in a dichotomic way by.
The exponent is obtained from the slope of at pc

on a log-log plot.
FSS argument:

1

νβ /

νβ /)(tρ

)/,/,(~),,(
/1/

bLbtpbbLtp
z∆∆ ⊥⊥− ννβ ρρ

With ⊥= νν / ||z In a large enough sample we can take 0 , =∆∞= pL

z
tb

/1=
∞→t

⊥νβ /

Square site directed percolation

S. Isogami, M. Matsushita

H. Hinrichsen: Adv. Phys. 49, 815 (2000)

(Self affine fractals)

Simulation trick: The process is Markovian (no backsteps)

Percolation depends only locally on the state of previous
neighboring sites. The information is only binary. If we store

the information about the wet sites in bits, simple bitwise
logical decisions allow for a parallel treatment.

Bitwise AND with

OR

Bitwise AND with
neighbors

Take care of:

- End of words (usually 32 bits)
- Even – odd differences

- BC-s

(Simple example of

„multispin coding” =
poor men’s parallel

computing)

The problem of Conformation of a polymer chain is related to

another geometrical phase transition.
Consider a polymer chain in a good solvent. How to

characterize its conformation?

3d object. How does the end-to-end

distance R depend on the number of
monomers (mass)?

Fractal scaling ν
NNR

D
~~

/1

Simplest model: The polymer is a random walk

In this case we know from the theory of diffusion: 2/1=ν

(Scattering) experiments show different value. What is wrong?

Monomers have a strong short range repulsion (excluded

volume). Model: Self-avoiding walk (SAW)
Let us study this on lattices! (Justified by universality.)

R

Self-avoiding random walk is a walk with no intersections. In 2d:

Random walk on the square lattice

http://polymer.bu.edu/java/java/saw/sawapplet.html

(Why phase transition? Grand canonical ensemble � critical µµµµ)

SAW

Memory!

The configurations to be considered are given.

The stat. phys. problem is not yet defined:

What is the weight of a particular configuration?

Random walk: All walks of length N have the same weight.

SAW: All self-avoiding walks of the length N have the same weight

Simplest simulation: Generate a plain random walk and throw it

away, when an intersection occurs. The probability of intersections
grows exponentially � only very short (N~10) walks. Far from

„Asymptotia”.

Simple correction: If intersection occurs, step back, and correct the

weight: We assign to each monomer i the weight , where zi

is the # of available neighbors and qi is the coordination number.

zi is updated when intersection occurs. The total weight is

ii qz /

∏
=

N

i

ii qz
1

/

Reptation method We start from a polymer of given
length and do the a

snake-like motion (tail�head). If
the chain gets stuck tail and head

are exchenged.

Configurations are generated
from each other: Consideration of

relaxation time for sampling is
necessary.

Trapped configuration (weight=0)

Reptation is non-ergodic, but only

slightly. Such configurations are
so rare that their absence does

not influence the results.

B. Li, et al

J. Stat. Phys.

80, 661 (1995)

The problem of polymer conformation is very rich:

- Good/bad solvent

- Polymer-polymer interactions
- Thermal effects

Some of these problems can be approached in a purely

geometric way.

What about thermal effects? In reality the weights are not

binary (1 or 0). There is a Hamiltonian describing the
monomer-monomer interaction and the weights are given

by the (canonical) distribution.

How to simulate a Hamiltonian system?

