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Other ensembles

Micorocanonical: Energy is conserved. We allow for the 

variation of the energy within a narrow band. This is 

maintained by a „bag” of a „daemon” (Santa Claus).

Creutz:
-1 Pick a site

- If the flip causes energy change too much for the tolerance
bag, reject the flip and go to 1. Otherwise

- If energy is gained put the gain into the bag, if it is lost, 

extend it from the bag.
- Go to 1

General observation: In case of conservation the dynamic

exponent z is larger. Dynamic universality classes within static

ones

Essentially deterministic, easy to parallelize.



Conserved order parameter: Kawasaki dynamics

The elementary step is: Exchange up-down spin pairs

Otherwise usual Metropolis can be applied.
Diffusive dynamics is more physical (pick neighboring spins)

For proper avarages (detailed balance!) a time step elapses

even if parallel spins are picked.

In fact, the ensemble we have dealt so far for the Ising model 
is the grand canonical one, as we have governed the system 

by the externel field, the intensive variable conjugate to the 

extensive magnetization (order parameter).

Canonical ensemble: The variables are T and M, fixed, i.e., 
the order parameter is conserved.

http://www.inference.phy.cam.ac.uk/mackay/itprnn/ising/

This method is able to simulate, e.g., an AB alloy.



Calculation of the entropy, free energy etc. (TD integrals)

Equilibrium statistical physics is not only about calculating 

averages of dynamic variables over ensembles. Quantities 
like S or F cannot be computed this way. As ,

it is enough to learn the (tedious) method on one of them.  
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The specific heat C can be computed from the fluctuations of 
the energy E, i.e. from the moments. >∆<= 22
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Thus C is computable as an average at any T. By definition: 
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Usually we are interested in entropy differences, thus the
integration constant drops out. The third law assures

for well behaving systems, which can be used for low
temperature behavior. 
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, which is a high temperature expression. If the two curves

cross each other, there is a phase transition. 



Monte Carlo kinetics
Often MC dynamics reflects physics. If there is randomness in

the moves, which can be considered as elementary in a 

process, MC is an adequate way to describe it. The simplest
example is diffusion. We have a field u(r,t), like the density of 

particles or charge or any density of a conserved scalar. Then
from the continuity equation and the linear approximation

(valid for small amplitude deviations from the homogeneous

state) we have: 
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In higher dimensions the Laplacian at site i is the sum of the field
at the neughbors minus coordination number X field at site i.
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If is taken by appropriate choice of the units u(r,t) 
can be interpreted as the probability of finding a randomly

walking particle at site r at time t. This can be simulated by MC.

(1d case)



The most important quantity for RWs is the mean square
displacement for which asymptotically

we have: 
>−>=<< 22

))0()(()( rr ttR

dDttR
t

2)(lim
2 >=<

∞→

There is no need to study the RW on a lattice by MC – it can be 
treated analytically. The the situation is different if the RW takes

place on a percolation lattice with occupation probability p.
We expect the following behavior:
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The algorithm on a lattice with coordination number z:
Occupy the lattice sites with probability p

1 The walker at site i chooses one neighbor site with probability
1/z

2 If that site is occupied move the walker there
3 time = time + 1

4 go to 1

Averages have to be taken over a) starting positions, b) disorder

Record the number of steps in the different directions and not the

position to avoid spurious jumps at the periodic BC-s

The time of simulation should not exceed L2/D.

Due to the Einstein relation between diffusion and mobility, this is 

an efficient way to measure conductivity in a random medium.
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The Ising model is another example where physical meaning 

can be given to the MC time. In a classical magnetic model the 
Hamiltonian does not tell anything about the dynamics, it only 

determines the weights of the equilibrium configurations. How 
is this equilibrium reached? Imagine that the system is in a 

heath bath, and the spins take place on the sites of a lattice, 

which undergoes thermal vibrations, i.e., the system is in an 
equilibrium of a phonon gas. The thermalization is just due to 

the interaction between the phonons and the spins. The lattice 
vibrations kick the spins resulting in random flips according to

the statistical weights. This is well modeled by the Metropolis 

algorithm.

http://www.inference.phy.cam.ac.uk/mackay/itprnn/ising/

This way time dependent phenomena like nucleation, spinodal

decomposition, relaxation become accessible by MC



Relaxation problems (slowing down)

We have already seen how critical slowing down hampers

the approach to equilibrium near to a critical point. 

There are other sources causing problems with the relaxation:
Slowing down due to conservation

Back to the diffusion eq: without sources and sinks
and special BC-s the (equilibrium) solution is constant u0. Let

us define the deviation from this solution as , for which
the same diffusion equation holds. We can solve it by the

Fourier method: for which
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This is a plain exponential

relaxation with the hydrodynamic relaxation time
2

/1 DkHD =τ

meaning that the longest wavelength inhomogeneities relax

very slowly, typically as ~ DL /
2



Critical slowing down

zξτ ~l

As already discussed, close to the critical point the correlation

length ξξξξ diverges and so does the related relaxation time:

This can be transformed into: , wherel~l

∆−ετ ε

is the reduced temperature and . The index is for

linear, because there is also a so called non-linear
relaxation time, which describes the relaxation of the order

parameter from initial values far from the equilibrium one.
The corresponding exponent is (Rácz, 1976).

ν/l z=∆

βν −=∆ /nl z

To make things more complicated HD relaxation, i.e., slowing

down is also incluenced by criticality.
We saw that the characteristic time is but, according

to the dynamic theory of critical phenomena, D is influenced
by criticality. E.g., we can expect that i.e., D

goes to 0 at the critical point leading to an additional
divergence in the relaxation time.

DL /
2

γ
εχ ~~

1−
D



Metastability

At first order transitions the correlation length remains finite. 

The mechanism of the first order transition is usually nucleation, 

which is related to metastability. Examples can be observed at
hysteresis or undercooling, overheating, over-compessing etc.

http://www.honeylocust.com/hysteresis/hys1.html
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The reason for the first order phase transition is that at that
point the free energy of the old phase becomes larger than

that of the new one.

The mechanism is nucleation. In homogeneous nucleation
there is a competition between the bulk free energy of the

droplet and its surface energy. As the former overtakes with
increasing size, there is a critical nucleus size above which

the transition is very rapid. However, such a critical nucleus
has to be created by spontaneous fluctuations – which takes

(sometimes enormously long) time.

Clearly, hysteresis, „phase
diagram” within the miscibility

gap etc. are velocity dependent.  

Metastability reflects the

(free) energy landscape



Glassy behavior

Model glass: spin-glass

where J-s are random quenched variables with 0 mean, e.g., 

±J with 1/2 probability.

Frustration:
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Macroscopically

degenerate
ground state

third law violated



How to find the ground state in a rugged energy landscape?

No simple optimization scheme works. NP-complete
optimization problem: The computational complexity (roughly

the CPU time needed to solve the problem) grows faster than
any power of the system size (practically exponentially).

Many important problems
- Traveling salesman

- Graph partitioning

- Graph coloring
…

If one NP complete can be reduced to polynomial computing
time, then all can be.

This is math. In reality we need good approximations, which
work fast.



Simulated annealing

In a simple landscape the ground state can be found quickly by

putting T=0 in a MC simulation. This method leads to spurious
result in a rugged landscape as the system gets stuck in an

improper minimum.

Simulated annealing uses the trick that a)  it lets the system

cool down slowly and b) it allows warming up again.

Traveling salesman problem: The salesman has to visit N 

cities randomly positioned in the plane such that it returns and 

the length of the path is minimum. (Basic problem e.g., in

circuit design.)
Hamiltonian = path length

Elementary move = exchenge two cities in the path
Use Metropolis simulated annealing. (T ~ alcohol ☺)

http://www.math.uu.nl/people/beukers/anneal/anneal.html


