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A B S T R A C T

A modification is suggested to the Brenner potential cut-off function in order to compute

atomic forces of carbon nanostructures in a more realistic way and giving a possibility to

fit the atomic forces to experimental data. With the modified Brenner potential, the loading

diagram and the tensile strength were determined for an example of the carbon nanotube

networks. According to these new computational results carbon nanotube networks can be

the materials which inherit the extremely high strength of the graphite sheet and they

bring this property in all directions of the 3D space (not only in one direction as the

nanotubes).

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The sp2 carbon–carbon bond in a graphite layer is the stron-

gest of all chemical bonds in solids [1,2]. Theoretical strength

values of the graphene were determined as rC ffi 0.316 TPa

derived from Young’s modulus [1,3] and rT ffi 0.14–0.177 TPa

derived from the work of fracture [1,4,5]. This theoretical

strength is important because it is the maximum theoretical

strength for all solids.

The carbon nanotubes could be the materials which

approach the theoretical strength of the graphene. Direct

mechanical measurements of the tensile strength were car-

ried out on multiwalled carbon nanotubes (MWCNC) [1,6]

and on single wall carbon nanotube (SWCNT) ropes [7]. To

determine the tensile strength a theoretical way was carried

out by molecular mechanical calculations using different

energetic potential functions. Different types of SWCNT-s

were studied using primarily the empirical Brenner potential:

[8–12]. For the same purpose, the Tersoff [9,13] and the Morse

potential [12,11,14] were used, as well. Recently, the finite

deformation shell theory was developed for theoretical stud-
er Ltd. All rights reserved
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ies of carbon nanotubes [15]. This continuum theory is based

on use interatomic potential, as well, and it can be the next

generation of theoretical methods to determine mechanical

properties.

Accordingly, today the straight carbon nanotubes are the

strongest materials. Nevertheless they show this property

only in one direction. Their extremely high strength can be

led by nanotube junctions into different directions of the

three-dimensional (3D) space. The significance of nanotube

junctions was first discovered in their electronic properties.

For example a heterogeneous junction built from a zig-zag

and an armchair tube behaves like a rectifying diode with

nonlinear transport characteristics [16]. The current–voltage

characteristics of a Y junction are measured [17], as well,

and we may hope that the molecular transistor will be found

in the group of the Y junctions. In our earlier research work

we have defined a set of nanotube junctions built from arm-

chair and zig-zag type straight tubes [18]. We have shown that

any number of tubes having an optional diameter can be con-

nected in a junction and we have developed a method to con-

struct their models as well. Our system is created in such a
.
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way that if a tube of a given type is taken out from the junc-

tion, it can always be replaced with a contrary type one. This

property can be interesting in electric applications. Later, we

have presented that nanotubes of any chirality can be con-

nected in a junction [19]. Nanotube junctions consisting of

more than three tubes were observed in various experiments

[20–22].

From different nanotube junctions different nanotube net-

works can be built. The basic types of regular networks are

named as supersquare (the network constructed from X junc-

tions), supergraphene (the honeycomb like network con-

structed from Y junctions), supercubic (the network

constructed from junctions having six perpendicular tubes)

and super-diamond (the network constructed from tetrahe-

dral junctions) [21]. Several mechanical properties (Young’s

modulus, bulk modulus and deformation mechanisms) were

determined for supersquares and supergraphenes [23]. Spe-

cial fractal networks, so-called super-carbon nanotubes based

on the nanotube structures were defined [24]. Others prognos-

ticate a successful future for the random nanotube networks,

although these networks have not contained junctions so far,

only disordered tubes as dropping pickup sticks. They could

be the most stable and the strongest electric conductors hav-

ing almost zero failure probability. Researchers hope a new

and cheap technology for their manufacturing will be found

shortly. Several research institutes in the world prepare them

today in plastic impregnated technology [22].

The goal of this work was to develop a method in order to

calculate the loading diagram and the tensile strength of

nanotube networks.
2. Calculational method

To determine the loading diagram and the tensile strength,

atomic forces are needed to compute. The atomic forces can

be calculated from a derived energetic potential function.

For this purpose, we have chosen the empirical Brenner po-

tential which is generally used in molecular mechanics and

molecular dynamic studies not only in carbon nanostructures

but in hydrocarbon structures, as well [25,26].

Brenner developed the interatomic potential for carbon as

VðrÞ ¼ VRðrÞ � �BijVAðrijÞ ð1Þ

for atoms i and j, where r = rij is the distance between atoms i

and j. VR and VA are the repulsive and attractive terms given

by

VR ¼
De

S� 1
e�
ffiffiffiffi
2S
p

bðr�RÞfijðrijÞ ð2Þ

VA ¼
DeS

S� 1
e�

ffiffiffiffiffiffi
2=S
p

bðr�RÞfijðrijÞ ð3Þ

The so-called cut-off function fij(rij), which restricts the

pair potential to the nearest neighbours, is given by

fijðrijÞ ¼

1; rij < R1

1þ cos
rij�R1

R2�R1
p

� �h i
=2 R1 � rij � R2

0 rij > R2

8>><
>>: ð4Þ

The parameter Bij in Eq. (1) represents a multibody cou-

pling between the bond from atoms i and j and the local envi-

ronment of atom i, and is given by
Bij ¼ 1þ
X

kð–i;jÞ
GðhijkÞfikðrikÞ

2
4

3
5
�d

ð5Þ

where hijk is the angle between bonds i–j and i–k, and the

function G is given by

GðHÞ ¼ a0 1þ c2
0

d2
0

� c2
0

d2
0 þ ð1þ cos HÞ2

" #
ð6Þ

For atoms i and j that have a different local environment,

Brenner suggested the replacement of the coefficient Bij in

Eq. (1) by

�Bij ¼ ðBij þ BjiÞ=2 ð7Þ

In accord with our experience more authors have noticed

that the cut-off function affects the computation of the atom-

ic forces very strongly. It introduces a dramatic increase in the

interatomic force at r = R1 (like a camelback on the force

curve), which rises sharply with a peak at around 30% strain,

Fig. 1b. To avoid this problem Shenderova et al. shifted the

cut-off function to larger strains so that it occurs after the

inflexion point in the interatomic potential [27]. Belytschko

et al. have found that the cut-off function affects strongly

even when it is shifted to 100% strain [12]. Duan et al. as-

sumed the cut-off function equal to 1 to avoid the dramatic

increase in the interatomic force [11]. Mylvaganam et al. de-

fined the changes of the slope on the interatomic force as dif-

ferent stages of the stress–strain curve [9].

Beside the above mentioned problem there are uncertain-

ties in the measured and calculated strength values of carbon

nanotubes, as well. In Table 1, we summarized the tensile

strength values found in the literature. The values are rather

different.

The reasons for the differences are partly because of the

differences in the structures and partly because rT is not de-

fined the in same way by the authors.

To compute atomic forces in a more realistic way we sug-

gest a modification in the cut-off function in the formulas of

the Brenner potential. Fig. 1 shows the effect of the cut-off

function on the energetic potential and on the atomic force

curve in the case of only one chemical bond of the graphite

sheet. The cut-off function (fij) is a monotonously decreasing

curve, it decreases from 1 to 0 between the distances of R1 and

R2, Fig. 1a. If we omit it from Brenner’s formulas, the energetic

potential approaches zero in the infinite, but if we do not

leave it out, the curve approaches zero at R2, Fig. 1b. The effect

is stronger on the atomic force function: the curve computed

with the cut-off function is basically other than the one with-

out the cut-off function, Fig. 1b. Besides this there is a break

point on the force curve, as well.

It is obvious that there is a large set of functions which

keep the property of the original cut-off function: they de-

crease monotonously from 1 to 0 between R1 and R2, Fig. 2a.

Consequently, if we use the elements of this set like cut-off

function to compute the energetic potential and the atomic

forces we can define a curve set for both of them, Fig. 2b. It

is important to mention that a small change in the energetic

potential curve between R1 and R2 means a large change in its

derived function, in the atomic force curve. We suggest

choosing the cut-off function from the function set in such



Fig. 1 – The cut-off function (a) and its effect on the energetic potential and on the atomic force curve (b) in the case of only one

chemical bond of the graphite sheet.

Table 1 – Experimental and calculated values of the tensile strength of different CNT-s

Nanotube structure rT (GPa) Method

SWCNT ropes [7] 13–50 Loading experiment

MWCNT [6] 11–63 Loading experiment

MWCNT [1] 150 Loading experiment

(5,5) Nanotube [14] 123 Calculated with Morse potential

(9,0) Nanotube [14] 94

(12,12) Nanotube [12] 112 Calculated with Morse potential

(16,8) Nanotube [12] 106 Calculated with Morse potential

(12,4) Nanotube [12] 98 Calculated with Morse potential

(20,0) Nanotube [12] 93 Calculated with Morse potential

(20,0) Nanotube [12] 110 Calculated with Brenner potential

(10,0) Nanotube [11] 105.38 Calculated with Morse potential

(10,0) Nanotube [11] 99.89 Calculated with Brenner potential

(10,1) Nanotube [11] 106.09 Calculated with Morse potential

(10,1) Nanotube [11] 100.46 Calculated with Brenner potential

(10,3) Nanotube [11] 110.21 Calculated with Morse potential

(10,3) Nanotube [11] 102.59 Calculated with Brenner potential

(10,5) Nanotube [11] 116.83 Calculated with Morse potential

(10,5) Nanotube [11] 104.20 Calculated with Brenner potential

(10,7) Nanotube [11] 124.09 Calculated with Morse potential

(10,7) Nanotube [11] 104.93 Calculated with Brenner potential

(10,9) Nanotube [11] 130.93 Calculated with Morse potential

(10,9) Nanotube [11] 105.64 Calculated with Brenner potential

(10,10) Nanotube [11] 134.01 Calculated with Morse potential

(10,10) Nanotube [11] 111.93 Calculated with Brenner potential

(10,10) Nanotube [9] 1357 Calculated with Brenner potential

(17,0) Nanotube [9] 754

(14,14) Nanotube [10] 250* Calculated with Brenner potential

(24,0) Nanotube [10] 125*

(6,6) Nanotube [13] 152.3 Calculated with Tersoff potential

(8,3) Nanotube [13] 107.6

(10,0) Nanotube [13] 92.5

(5,5) Nanotube [8] 1700–1800* Calculated with Brenner potential

(9,0) Nanotube [8] 1400*

(10,10) Nanotube [8] 1700–1800*

(17,0) Nanotube [8] 1400*

(15,15) Nanotube [8] 1700-1800*

(26,0) Nanotube [8] 1400*

* The value is read from the loading diagram.
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a way that we fit the force curve to experimental results if it is

possible. Beside this we suggest putting the value of R1 to the
minimum place of the energetic curve to avoid the breakpoint

of the functions.



Fig. 2 – (a) A set of the cut-off functions. (b) The energetic potential (lower half of the diagram) and the atomic forces (upper

half of the diagram) computed with (6) different elements of the cut-off function set (for only one chemical bond of the

graphite sheet).

Fig. 3 – The coordinates of the inflexion point RT and fT

which will be the free parameters.
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To describe the curve set of the cut-off function mathemat-

ically we used polynoms in two different intervals defined by

fijðrÞ ¼
f1ðrÞ;R1 6 r 6 RT

f2ðrÞ;RT < r 6 R2

�
ð8Þ

where

f1ðrÞ ¼ a0 þ a1rþ a2r2 þ a3r3 þ a4r4 and

f2ðrÞ ¼ b0 þ b1rþ b2r2 þ b3r3

The selection is favourable because polynoms are derived

very easily. The two different intervals between R1 and R2

are separated by the inflexion point of the curve having coor-

dinates of RT and fT which will be the free parameters for the

fitting, Fig. 3.

The conditions to fit the curves at R1, R2 and RT determine

nine different linear equations as

f1ðR1Þ ¼ 1 ð9Þ
f 01ðR1Þ ¼ d ð10Þ
f1ðRTÞ ¼ fT ð11Þ
f 01ðRTÞ ¼ f 02ðRTÞ ð12Þ
f 001 ðRTÞ ¼ 0 ð13Þ
f2ðRTÞ ¼ fT ð14Þ
f2ðR2Þ ¼ 0 ð15Þ
f 02ðR2Þ ¼ 0 ð16Þ
f 002 ðRTÞ ¼ 0 ð17Þ

The role of the 0d 0 parameter in Eq.

The role of the ’d’ parameter in Eq. (10) is to fit the force curve

at R1 to avoid the breakpoint if R1 is not chosen to the mini-

mum place of the energetic potential. Since we put R1 to the

minimum place, d = 0 in our calculations detailed in the

Section 2.

The free parameters of RT and fT are intended to fit the

potential function to experimental data. The tensile strength

(rT) of several MWNTs is known from experiments today (see
Table 1) and we will use one of these data for the fitting later

(last paragraph of this chapter).

We mention here that the original version of the Brenner

cut-off function, the cosine function can not be used in the

fitting procedure because of the absence of free parameters.

We used a cubic and a fourth-degree polynom to solve the

equation system (9)–(17).

In Eqs. (18)–(25), we show the solution of the nine equa-

tions for the coefficients of the polynoms. The recursive for-

mulas can be used in computer codes very easily

b3 ¼
fT

2ðR2 � RTÞ3
ð18Þ

a4 ¼
3fT � 3� dðRT � R1Þ þ 6b3ðR2 � RTÞ2ðRT � R1Þ

ðRT � R1Þ4
ð19Þ

a3 ¼
4a3½R3

T � R3
1 � 3R2

TðRT � R1Þ� þ 3b3ðR2 � RTÞ2 þ d

3ðRT � R1Þ2
ð20Þ

b2 ¼ �3b3RT ð21Þ
a2 ¼ �3a3RT � 6a4R2

T ð22Þ
a1 ¼ d� 2a2R1 � 3a3R2

1 � 4a4R3
1 ð23Þ

b1 ¼ d� 2b2R2 � 3b3R2
2 ð24Þ

a0 ¼ 1� a1R1 � a2R2
1 � a3R3

1 � a4R4
1 ð25Þ
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The mathematical description of the curve set is not so

easy. There are too many conditions (Eqs. (9)–(17)) and the

solution for them is generally only partial. For example, let

us regard the solution for an interval of R1 = 0.145 nm and

R2 = 0.2 nm (this value was used everywhere in the literature).

In this case we can choose values for fT and RT only inside a

part of the rectangle defined by (R1,R2) and (0,1) shown as

the hatched area in Fig. 3. If the inflexion point is beyond this

area, the monotonously decreasing property is not realized.

However, the hatched area was enough to find the most appli-

cable curve from the function set.

We fitted our parameters to experimental data calculated

for one chemical bond. For this purpose, we have chosen

Demczyk’s et al. measurement on multiwalled nanotubes be-

cause the measured structure can be derived from their paper

[1]. They observed a tensile force of 18 lN on a tube having a

diameter of 12.5 nm, the type of the tube is not known. If we

assume that the tube was a zig-zag type tube, then the outer

tube has to have a (160,0) structure. The distance of the paral-

lel tubes has to be minimum 0.34 nm which is the interlayer

graphite distance, accordingly the inner tubes have to have

(150,0), (140,0), (130,0), . . ., (10,0) structures. It means that

160 + 150 + 140 + . . . + 10 = 1360 bonds being parallel with the

loading direction have to be broken together, so the tensile

force is 18 lN/1360 = 13.23 nN for one bond. If we assume that

the tube was an armchair type tube, then the outer tube has

to have a (92,92) structure. The distance of the parallel tubes

has to be minimum 0.34 nm which is the interlayer graphite

distance, accordingly the inner tubes have to have (86,86),

(80,80), (74,74), . . ., (8,8) structures. It means that

2(92 + 86 + 80 + . . . + 6) = 1500 bonds have to be broken to-

gether, the angle between the bonds and the loading direction

is 30� at the beginning of the loading. Considering that the an-

gle has to be a bit smaller at the tensile force, the tensile force

has to be a bit smaller than 18 lN/1500/cos30� = 13.86 nN for

one bond. To fit the maximum atomic force we have chosen

13.3 nN.

The strain value of the maximum force cannot be known

in Demczyk’s et al. paper [1] therefore we tried to compute

without this.
RT=1.6,fT=0.656
RT=1.7,fT=0.437
RT=1.8,fT=0.237
RT=1.9,fT=0.080

The fitted functions, 
from left to right: 

a 

Fig. 4 – (a) (fT,RT) pairs, (b) the corresponding atomic force (F in nN

lower part) fitted to experimental data in case of one chemical
In a special iteration procedure we varied the value of RT

between R1 and R2 beside this we varied the value of fT be-

tween 0 and 1. It is obvious that for every value of RT we can

find a value of fT so that the maximum force is the same, be-

cause we do not know the place of the maximum force. In this

work, we selected four characteristic (RT,fT) pairs in order to

compute forces. The (RT,fT) pairs with the corresponding

atomic force and the energetic potential curves can be seen

in Fig. 4. We mention again that in the case of a very small

change in the energetic potential (see the fitted energetic

functions in the lower part of the diagram) there is a large

change in the atomic force function (see the fitted force func-

tions in the upper part of the diagram: the change here is only

in the place of the maximum force).

The maximum force on the fitted functions is smaller than

the maximum one on the Brenner’s original function, Fig. 4b,

although we do not know how realistic our assumption is for

the structure of the MWCNT in Demczyk’s et al. experiment.

The places of the maximum force, the tensile strain (6–12%)

on the fitted functions are smaller than it is on Brenner’s func-

tion (30%), as well, because we have shifted R1 to the place of

the minimum energy. For the tensile strain there are experi-

mental results, as well: Yu et al. measured about 5% on SWCNT

ropes [7] and about 10–12% on MWCNT [6], but we do not know

it from Demczyk’s et al. paper [1]. If there will be other or more

accurate experimental data for the strain, it could be needed to

fit the functions again and maybe to change R1 and/or R2. We

notice that there can be smaller changes in the slope on the

descending branch of the fitted atomic force curve in several

cases (e.g. the dotted line in Fig. 4b), but this part of the atomic

force function and that of any loading diagram is not important

in engineering aspect.

In the end we mention that the values of R1 and R2 affect

the maximum atomic force very strongly. Agrawal et al.

showed differences in the loading diagram of nanotubes if

R1 is varied between 1.6 and 1.7 [10]. In our calculation, R1

equals to the equilibrium atomic distance in unloaded state

to avoid the break point on the atomic force curve. The phys-

ical mean of a slope–change on the curve is not known. R2 is

the same as Brenner’s original value.
b 
-s, upper part) and the energetic potential curves (V in eV-s,

bond (r is the bond distance).



Fig. 5 – Different views of the unit cell of the selected

network.
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For the energetic potential we used the second set of

parameters provided by Brenner adopted here as follows:

De = 0.9612 nN nm, S = 1.22, b = 21 nm�1, R = 0.139, d = 0.5,

a0 = 0.00020813, c0 = 330, d0 = 3.5, R1 = 0.17 nm, R2 = 0.2 nm.

This set corresponds to the equilibrium bond length

r0 = 0.145 nm.
Fig. 6 – The structure after 28%

0
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ΔL (Angström

from left to right: 

RT=1.9,fT=0.080, σ
RT=1.8,fT=0.237, σ
RT=1.7,fT=0.437, σ
RT=1.6,fT=0.656, σ

a

Fig. 7 – The loading diagrams and the tensile s
In order to compare our method with other works (see in

Table 1), we have calculated the tensile strength of a zig-zag

(10,0) and an armchair (10,10) tube in the case of the four se-

lected (RT,fT) pairs. In these calculations, we have divided the

maximum force calculated from the loading process (parallel

with the tube axis) by the cross section of the tubes given by

Dpt where D is the diameter of the tube and t = 0.34 nm is the

interlayer graphite distance. We have found that the tensile

strength of the (10,0) tube is 156 GPa for all the four (RT,fT)

pairs and the corresponding strain is between 5% and 13%,

the tensile strength of the (10,10) tube is 178 GPa for all the

four (RT,fT) pairs and the interval of the corresponding strain

is a bit greater than it is for the (10,0) tube. The order of mag-

nitude of these values is the same as Duan’s et al. [11], Bely-

tschko’s et al. [12] and Agrawal’s et al. [10] results. Our rT

values are greater than Duan’s et al. [11] and Belytschko’s et

al. [12] results where the cut-off function is omitted from

the calculations, and smaller than Agrawal’s et al. [10] results

where the second generation of the Brenner potential [26] was

applied. The tendency that an armchair type tube is stronger
, 40% and 55% elongation.

20

)

Dir.1Dir.2

T=25.1GPa

T=24.9GPa

T=24.7GPa

T=24.3GPa

b

trength (a) for the first loading direction (b).
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than a zig-zag type tube is similar in our calculation to the

one Duan’s et al. [11] work, where the chirality dependence

of nanotubes was studied.
3. Calculated results

The aim of this work was to determine the strength properties

of carbon nanotube networks. A super-diamond structure

consisting of (3,3) nanotubes was selected for our computa-

tion. In Fig. 5, we can see the 1186 atom initial unit cell of

39.94 Å. During our calculations we kept periodic boundary

condition.

The loading simulation was carried out by elongating the

structure in very small steps. After each step, we computed

the new equilibrium positions of the carbon atoms. We no-

ticed for the equilibrium coordinates that any cut-off func-

tions of our set gave the same result as the original one.

Namely the modified cut-off function does not change the

minimum place of the energetic potential. In Fig. 6, the three

snapshots of the simulation show the structure after 28%,

40% and 55% elongation. It can be seen that the structure

starts to break at the straight tubes and not at the junctions.

In the end we calculated the loading diagrams using the

four selected (RT,fT) pairs to compute atomic forces detailed

in the Section 1. To determine the tensile strength we divided

the maximum force by the cross section of the unit cell. We

carried out the computations for two main directions,

Fig. 7b. The loading diagram and the calculated tensile

strength for the direction being perpendicular to the faces

of the unit cell (Dir. 1) can be seen in Fig. 7a. If the loading

direction is parallel with the tube axes (Dir. 2), the value of

the tensile strength was a bit smaller: 20.2, 20.7, 21.1 and

21.4 GPa for the selected (RT,fT) pairs of (1.6, 0.656), (1.7,

0.437), (1.8, 0.237), (1.9, 0.080), respectively.

Thus the tensile strength is between 24.3 and 25.1 GPa and

the corresponding strain is between 20% and 50% for the

direction which is perpendicular to the faces of the unit cell.

Similarly, the tensile strength is between 20.2 and 21.4 GPa

and the corresponding strain is between 20% and 50% for

the direction which is parallel with the tube axes. To sum

up the difference in the tensile strength between our network

and the single nanotubes is less than one order of magnitude,

and we mention beside the above that our example is not the

densest network.

4. Conclusions

As the cut-off function of our modified Brenner potential was

fitted to experimental loading data it can be applied in a more

realistic way in order to compute the loading simulations and

characteristic forces of various carbon nanostructures.

Carbon nanotube networks can be the materials which in-

herit the extremely high strength of the graphite sheet and

they bring this property in all directions of the 3D space

(not only in one direction as the nanotubes).
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