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Abstract: A graph-theoretical procedure is proposed for assigning a chirality
descriptor (the topological sign �(�) or �(�)) to each enantiomer of a chiral
polyhedron, polyhedral molecule or graph, independently of any vertex labelling
scheme. Model Cartesian coordinates and rotational strengths are obtained using
only adjacency information; a generalised HOMO±LUMO rotational strength is
used to associate a sign with a Schlegel diagram and the corresponding three-
dimensional structure, polyhedron or molecule. The topological sign gives an
unambiguous way of communicating the identity of an enantiomer. The mean-square
topological rotational strength is a possible measure of the chirality content of a
polyhedral graph or structure.
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Introduction

Different systems for the assignment of absolute configura-
tion to fullerenes have been proposed, each requiring a
standard numbering scheme.[1] Extension of the Cahn ± In-
gold ± Prelog rules[2] to bare carbon cages[3] allows assignment
of an R or S descriptor to each carbon, and if a convention for
labelling a specific carbon were added, could give a molecular
descriptor by taking the descriptor of this carbon for the
fullerene as a whole. However, it seems desirable to have a
simpler procedure that is easy, automatic to apply and is based
on purely graph-theoretical considerations. The purpose of
the present paper is to propose such a procedure, yielding a
single configurational descriptor for any chiral fullerene and
its corresponding Schlegel diagram.
When a molecular property can be expressed by a (non-

zero) single number, there are two possibilities for a chiral
molecule: The result of a ideal measurement is either the

same for both enantiomers (e.g. a molar absorption coef-
ficient, density) or of opposite sign for each enantiomer (e.g.
specific rotatory power, induced twisting power[4]). The first
are examples of scalar, the second of pseudo-scalar proper-
ties.[5, 6] A scalar is invariant under all transformations of
three-dimensional space; a pseudo-scalar is invariant under
all proper, but reverses sign under all improper transforma-
tions. The assignment of configurational descriptors relies
explicitly or implicitly on pseudo-scalars: in the � /� (or d/l)
system[7] the relevant pseudo-scalar, the value of a rotational
power, is explicit ; in the now superseded �/� system,[8] the
pseudo-scalar is implicitly defined by the right or left position
of a substituent in a standard planar diagram; in the CIP
system,[2] the R/S labels relate to an ordering of four points in
a three-dimensional model, which defines an implicit pseudo-
scalar, as in the steering-wheel rule.[2a]

Here we used the physical hint supplied by optical rotatory
power[9] and combined it with topological molecular-orbital
theory to produce a pseudo-scalar, which will give a sign to
each enantiomer of every graph which is capable of repre-
senting a chiral fullerene. It is obtained in a fully automatic
way from the adjacency matrix A of the molecule, without
requiring a standard numbering of the atoms. The procedure
has two steps. In the first, diagonalisation of A affords the
™topological∫ coordinates[10] of one of the two enantiomers. In
the second, these coordinates and the eigenvectors of A are
used to calculate formal rotational strengths[11] Rab of a� b
transitions within the framework of H¸ckel theory. The signs
of these quantities are uniquely related to the identity of the
constructed enantiomer, and we therefore propose to use the
sign of a particular rotational strength as an easily calculated
chirality descriptor for the molecule. Since this procedure
relies only on the adjacency matrix, the result is a topological
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chirality descriptor. H¸ckel theory is used merely as a
convenient calculus. The descriptor does not rely on any
presumed relation between the formal quantities and exper-
imental rotational strengths.[12] The power of the approach
depends on the fact that co-ordinates and model electronic
structures can be assigned to such molecules from adjacency
information alone.[10] The same approach can also be used to
define a measure of the ™chirality content∫ inherent in a given
fullerene, or any polyhedral graph or molecule.

Background Definitions

Spheroarenes are all-carbon molecules[13] with molecular
graphs (i.e. , sets of vertices (atoms) and edges (bonds)) that
correspond to cubic polyhedra, that is, trivalent graphs that
can be drawn in the plane without edge crossings and require
deletion of at least three vertices for disconnection. Fullerenes
are carbon cages that obey the additional condition that all
faces of the polyhedron are either pentagonal or hexago-
nal.[14, 15]

An embedding of a graph in three-dimensional space may
be built up from its adjacency properties. The elements Aij of
the adjacency matrix A of a molecular graph are equal to 1 if
there is a bond connecting atom i to atom j and otherwise they
are equal to 0. The atom labels are in principle arbitrary,
although standard numbering schemes exist for some full-
erenes.[1a±c] In a chemical context, the eigenvalues �a of this
matrix yield the energies �a of the H¸ckel molecular orbitals
�a through �a����a�, and the eigenvectors give the coef-
ficients cai in the expansion of the molecular orbitals (MO) in
the atomic basis: �a�

�
i

cai�i . In fullerenes (and more
generally, in spheroarenes or N-vertex trivalent graphs), the
eigenvalues, arranged in non-increasing order, are[16] �3�
�1� �2� �3� �4� . . . ��N�� 3 (�N��3 if the graph is
bipartite) and the first MO, �1, corresponding to �1� 3, has
c1i�N�1/2.

The adjacency eigenvectors also supply information about
the embedding of the molecular polyhedron in space by
furnishing a set of purely graph-theoretically derived coor-
dinates. These topological coordinates[10, 15] are Cartesian
coordinates for a particular three-dimensional model and
refer to an arbitrarily oriented frame, which we take as right-
handed. The models so obtained have the topological
symmetry[17] of the molecule, that is, the highest symmetry
compatible with the connectivity of the graph. The idea is to
identify the three adjacency eigenvectors {�x , �y, �z} that
have patterns of coefficients on the sphere that are p-like, that
is, each composed of a single positive and a single negative
lobe, separated by a nodal surface,[10, 18] and to take the
coefficients in these vectors as proportional to physical
Cartesian coordinates. Figure 1 shows how the positive and
negative coefficients of the �x , �y, �z eigenvectors separate in
each case for a small spheroarene 1.

Figure 1. Schematic representation of the three eigenvectors �x, �y, �z of
1, corresponding to the eigenvalues �� 2.15, 1.28, 1, respectively; the
diameter of a circle is approximately proportional to the coefficient
attached to each atom (vertex); unlabelled vertices correspond to null
coefficients; the sign of the coefficient is indicated by white for positive and
black for negative. The dotted line in each diagram is the trace of the three-
dimensional nodal surface separating the single positive and negative lobes.

The set of three required vectors occur early in the order
�1 . . . �N, and can often be identified by inspection based on
symmetry considerations. In refs. [10, 18], the topological
coordinates are scaled in the three directions by a factor
depending on the respective eigenvalue; in the present work,
we use the pure unscaled eigenvectors in order to retain the
simplifications that follow from their orthonormality (see
below).
In the case of an intrinsically chiral polyhedron (i.e., one

that, when embedded in three dimensions using its topological
coordinates, has only proper elements of symmetry), the
topological coordinates represent one enantiomer only, but
since the adjacency matrix is the same for both, the identity of
that enantiomer is a random consequence of the diagonalisa-
tion procedure. However, it is precisely related through a well
defined flattening process to a two-dimensional object, the
Schlegel diagram. A practical way[1a,b,d, 3] of obtaining this
diagram is to place a ball-and-stick molecular model on a
plane and to flatten the whole object into the plane so that the
bottom face expands to contain the rest. This flattening
procedure corresponds to one of several definitions for
Schlegel diagrams,[20] and the choice of top and bottom faces
is in principle arbitrary although standard conventions are
available for fullerenes.[1a,b]

The flattening process may be used to establish a one-to-
one correspondence between a three-dimensional model of a
given enantiomer and a specific Schlegel diagram, either by

Abstract in French: On pre¬sente un proce¬de¬ de the¬orie des
graphes pour attribuer un descripteur de chiralite¬ (le signe
topologique �(�) ou �(�)) a¡ chacun des deux e¬nantiome¡res
d×un polye¡dre chiral, d×une mole¬cule polye¬drique chirale
(sphe¬roare¡ne) ou encore du graphe correspondant, sans faire
appel a¡ un quelconque syste¡me de nume¬rotation des sommets.
L×information contenue dans la matrice de connectivite¬ fournit
a¡ elle seule les �coordonne¬es carte¬siennes topologiques� et
les� forces rotationnelles topologiques� . Le signe de la force
rotationnelle topologique associe¬e a¡ la transition HOMO±
LUMO, e¬ventuellement ge¬ne¬ralise¬e, de¬finit le signe topolo-
gique commun a¡ un diagramme de Schlegel et a¡ la structure 3D
(mole¬cule ou polye¡dre) qui lui correspond, permettant ainsi
une de¬finition non ambigue» de l×e¬nantiome¡re conside¬re¬. On
conside¡re la possibilite¬ d×utiliser la moyenne quadratique des
forces rotationnelles topologiques comme mesure du contenu
de chiralite¬ d×un graphe, et du polye¡dre ou du sphe¬roare¡ne qui
correspondent a¡ ce graphe.
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visual examination, or by the following automatic procedure.
First, labels I, J and K are applied to a set of three (non-
collinear) atoms on two adjacent bonds, chosen in a way that
the plane defined by these atoms does not contain O, the
origin of coordinates. The construction of the Schlegel
diagram may then be performed: flattening the polyhedron
while insisting that all angles and edge lengths of the
tetrahedron OIJK remain constant. The pseudo-scalar triple
product

PIJK�OI ¥ (OJ�OK) (1)

is then conserved, and thus can be used to ensure that the
same enantiomer is treated throughout. In terms of the
topological coordinates, with rI� {xI , yI , zI},

PIJK� rI ¥ (rJ� rK) (2)

In the coordinate system OXYZ defined by

XI�YI�0, ZI�Z � 0, XJ�0, YJ�0, ZJ�Z, XK� 0, YK � 0, ZK�Z (3)

where Z is the distance from O to the ABC plane, this triple
product is

PIJK��ZYJXK (4)

and PIJK and XK have opposite sign.
The sign of PIJK is directly related to the sense of the arc I�

J�K viewed from the outside of the polyhedron: it is positive
when motion along the arc would be anticlockwise and
negative when it would be clockwise. (It is important to note
that in the Schlegel diagram as constructed above, all faces
except the bottom face are seen from the outside of the
polyhedron, and preserve the same orientation in the diagram
and on the polyhedron itself. The face at the bottom is viewed
from the inside of the polyhedron and so has a reversal of
orientation.)
Hence, the sign of the triple product can be used to

determine whether or not a given Schlegel diagram corre-
sponds to the flattened version of a given three-dimensional
enantiomer–it is necessary only to compare the computed
sense of the arc with its sense on the diagram. This simple idea
can be used with any set of three-dimensional coordinates,
whether topological, calculated or experimental, to correlate
the polyhedral object with the appropriate Schlegel diagram.
The observation that a suitable triple of vertices defines an

enantiomer is at the heart of the proposal for fC and fA
fullerene descriptors.[1d, 19, 21] The prescribed triple in this
convention has I, J, K as the first three labels in the standard
fullerene numbering system. As these three vertices lie on the
top face of the polyhedron, they appear in the central region
of the Schlegel diagram. fC and fA descriptors are fixed by the
sense of motion 1� 2� 3, and hence in effect by the sign of
P123. This purely automatic procedure is more convenient
than the IUPAC C/A system[1a,b] where it is necessary to
construct the three-dimensional model and check alignment
of specific structural features.

Rotational Strengths

According to the theory of optical activity,[11, 22] a transition
from one 	a
 to another state 	b
 contributes to the optical
rotatory power and to the circular dichroism of a molecule
through the rotational strength of the transition, which for a
single electron moving in the field of the nuclei is (in atomic
units),

Rab���a 	 r 	 b
 ¥ �b 	 r��	 a
 (5)

where r and � are the position and derivative operators in
Cartesian coordinates. These coordinates are attached to the
molecule,[23] the origin being taken at the centre of mass. For a
one-electron model, the states are orbitals, that is 	a
��a ,
	b
��b and using the LCAO expansion, 	a
�

�
i

ai�i and

	b
�
�
i

bj�j , the matrix elements in Rab become

�a 	 r 	 b
�
�
i

�
j

a *i bj ��i 	 r 	�j
 (6)

and

�b 	 r��	 a
�
�
k

�
l

b *k al ��k 	 r��	�l
 (7)

The calculations may be simplified by taking real MOs
made up of Gaussian s-type functions to simulate the radially
directed hybrid orbitals of the fullerene � system that is

�i�Kexp[�w(r� ri)2] , (8)

from which

�a 	 r 	 b
�
�
i

ai bi ri �
1
2

�
i�j

(aibj�ajbi)Sij (ri�rj), (9)

where Sij���i 	�j
, and

�b 	 r��	 a
�w
�
k

�
l

Sklbkal rk� rl (10)

To retain only the leading non-zero terms, we can simplify
(9) by taking Sij� �ij in the spirit of the H¸ckel theory;
however, in Equation (10) we must take Skl�AklS. Hence,
setting wS� 1

Rab�
�
i

�
aibiri

�
¥
��

k

�
l

Aklakblrk� rl

�
(11)

or

Rab�
�
i

�
k

�
l

Aklaibiakblri ¥ (rk� rl)

�
�
i

�
k�l

Aklaibi(akbl� albk)ri ¥ (rk� rl)

(12)

The result of this derivation, Rab, is a purely topological
quantity which behaves like a rotational strength and will be
called a topological rotational strength.
It has a number of easily derived properties:

a�) From its form as a product of sums over atoms and bonds,
the value of Rab is independent of any particular scheme
for numbering the vertices of the graph. As a consequence,
it is possible to assign a descriptor to any new chiral
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fullerene, whether or not a convenient standard number-
ing has been devised.

b�) The terms contributing to Rab are entirely determined by
the adjacency matrix: they are matrix elements Aij ,
coefficients ai , bi associated with vertex i in the molecular
orbitals a and b, or entries xi , yi , zi in the special vectors �x ,
�y and �z that determine the topological coordinates.

c�) Each Rab is a pseudo-scalar by construction, with opposite
sign for opposite enantiomers. Therefore it changes the
sign if all xi , yi , zi are simultaneously reversed. Rab is the
trace of a 3� 3 tensor.[24]

d�) By the completeness of the H¸ckel eigenvectors, Rab obeys
the Condon sum rule[11a,b]

�
b

Rab� 0 (13)

e�) As seen from Equation (12), each Rab is invariant to
permutation of indices k and l, as under the switch k� l,
both the term (akbl� albk) and the mixed triple product of
position vectors change sign.
As the topological coordinates are obtained from eigen-

vectors of the same matrix that determines the MOs, the
quantities Rab obey additional identities when pure topolog-
ical coordinates are employed:
a��) When 	b
 ��x , �y or �z , �1 	 r 	 b
� 0, from the ortho-

gonality properties of the vectors of a symmetric matrix,
and R1b is zero.

b��) When 	b
��x , �y or �z , the orthonormality properties
give �1 	 r 	�z
� k/

����
N



where k is the unit vector on the z

axis, and R1z rearranges to

R1z�
1

N

�
k

�
l

Aklzl(xkyl� ykxl) (14)

with similar expressions for R1x and R1y. As the topo-
logical coordinates are eigenvectors of the adjacency
matrix,

�
k

Aklxk� �xxl , so that

R1x�
1

N
(�y� �z)

�
l

xlylzl (15.1)

R1y�
1

N
(�z� �x)

�
l

xlylzl (15.2)

R1z�
1

N
(�x� �y)

�
l

xlylzl (15.3)

Note the xyz product in Equation (15), the simple chiral
perturbation used in the first one-electron theory of
rotatory power[11a] and in the celebrated octant rule.[25]

c��) As a consequence, the sum R1*�R1x�R1y�R1z is zero.
d��) Further, in case of degeneracy between at least two of the

�x, �y or �z vectors, not only the sum R1*, but all three
components R1x , R1y and R1z vanish. In the absence of
degeneracy (i.e. , space groups C1, C2 and D2), all three
components are non-zero and distinct.

When one or both of the states a and b belong to degenerate
levels, each set of orthonormal degenerate eigenvectors,
{a1, . . . a� , . . . a�} and {b1, . . . b� . . .b�}, is arbitrary to within a
unitary transformation. Although the corresponding rotational

strengths Ra�b	 depend on the particular choice of orbitals, the
aggregate sum over the two sets,

RAB�
��

��1

��

	�1
Ra�b	 (16)

is independent of this choice.RAB will be termed the aggregate
rotational strength. This term will be taken to include the non-
degenerate cases, where Rab�RAB for �� � � 1.

Recipe for the Descriptor

The full set of aggregate rotational strengths RAB defines a
matrix R of topological invariants for a chiral polyhedral
graph. For the purpose of assigning a descriptor (i.e., the sign
of a pseudo-scalar) to the graph representing an enantiomer,
any non-zero entry R *AB in R would be sufficient to define the
topological sign. An intuitive and chemically plausible choice
for the defining rotational strength R *AB is to assume that the
N-vertex graph represents a neutral molecule, thus defining
HOMO and LUMO eigenvalues at �N/2 and �(N/2)�1 and to take
A and B as HOMO and LUMO, respectively. In case of
degeneracy, we take the HOMO set to comprise all the MOs
with eigenvalue �N/2, and the LUMO set to contain all the
MOs at the next eigenvalue. If the aggregate rotational
strength for the transition between these sets vanishes, then
the LUMO is taken as the next available set of unoccupied
orbitals, and so on. If this variation in B fails to produce a non-
zero RAB, then A, and in the last resort both A and B, can be
varied. With this flexibility, we can always find a descriptor,
unless all RAB are ™accidentally∫ zero, or zero to within
computer precision, as in a topological analogue of a chiral
molecule with no detectable optical rotatory power (a case of
™potential optical activity∫,[26] ™cryptochirality∫[27] or ™crypto-
optical activity∫[28, 29]). The hierarchical definition of RAB
should avoid the problem of ™latent handedness∫[30] that
may arise for single descriptors.[6]

The explicit recipe for associating a sign with the enan-
tiomer described by a particular Schlegel diagram of a chiral
polyhedral graph is therefore as follows.
1) Start with the Schlegel diagram.
2) Use this to determine the adjacency matrix in an arbitrary
labelling.

3) Diagonalise that matrix and use the eigenvectors to obtain
the derived set of topological coordinates and to calculate
R *AB.

4) Identify a triple IJK in the Schlegel diagram and calculate
PIJK from the topological coordinates.

5) Compare the computed sign with the sense of the triple on
the diagram.
Either the Schlegel diagram corresponds to the three-

dimensional enantiomer, and the sign of the defining R *AB is
the desired descriptor, the topological sign of the Schlegel
diagram, or the diagram corresponds to the opposite enan-
tiomer, and the topological sign of the diagram is then that of
�R *AB.
Graphs and enantiomers with a positive topological sign

will be labelled �(�) and those with a negative topological
sign �(�).
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Examples

The procedure specified in the previous section was applied to
a selection of chiral fullerene and other spheroarene poly-
hedral graphs. The Schlegel diagrams of the molecules 1 ± 10
are given in Figures 2 ± 7. Structures 1 ± 4 are the carbon
skeletons of spheroalkanes C10H10 barettane,[31] C12H12, C16H16
and C28H28.

Figure 2. Schlegel diagrams for: 1, the �(�) enantiomer of a C2-symmetric
C10 spheroarene; 2, the �(�) enantiomer of a C1-symmetric C12 spheroar-
ene; 3, the �(�) enantiomer of a C3-symmetric C16 spheroarene; 4, the �(�)
enantiomer of a chiral, tetrahedrally symmetric C28H28 spheroarene (the
smallest spheroarene of T symmetry); 5, the �(�) enantiomer of the
hypothetical D2-symmetric C28 fullerene.

Figure 3. Schlegel diagram for 6, the �(�) enantiomer (A) of the D2-
symmetric C76 isolated-pentagon fullerene.

Figure 4. Schlegel diagram for 7, the �(�) enantiomer (C) of the D3-
symmetric C78 isolated-pentagon fullerene.

Figure 5. Schlegel diagram for 8, the �(�) enantiomer of theD2-symmetric
C80 isolated-pentagon fullerene.

Structures 5 ± 10 are chiral fullerenes, comprising the D2

isomer of C28 (5) (the smallest possible intrinsically chiral
fullerene), four of the smallest experimentally produced
chiral fullerenes (the isolated-pentagon D2-C76 (6),[32] D3-C78
(7),[33] D2-C80 (8)[34] and D2-C84 (9)[35] isomers), and the
smallest chiral icosahedral fullerene isomer, I-C140 (10). For
6, 7 and 9 the standard IUPAC numbering scheme[1a,b] is used
to label the Schlegel diagram, and for 1 ± 5 and 10 the labelling
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Figure 6. Schlegel diagram for 9, the �(�) enantiomer (A) of the D2-
symmetric C84 isolated-pentagon fullerene 84:22 (spiral nomenclature[15]).

Figure 7. Central portion of the Schlegel diagram for 10, the �(�)
enantiomer of the I-symmetric C140 isolated-pentagon fullerene.

is taken from ref. [3]. For 10, only a small central portion of
the Schlegel diagram is shown (for the full version of the
diagram of the opposite enantiomer, see ref. [13]).
The procedure described above for assigning a topological

sign was applied to each Schlegel diagram 1 ± 10, giving the
results listed in Table 1. In all cases it turns out that the
topological coordinates are defined by the first three non-
isotropic eigenvectors, the vectors 	�2
, 	�3
, 	�4
. As only the
sign of any computed property is relevant here, the coordi-
nates were taken directly from the raw eigenvectors (xi� c2i ,
yi� c3i , zi� c4i).[10, 15] The normalisation of the eigenvectors
then implies a scaling of the polyhedron in which the radius of
sphere defined by the rms distance of the vertices from the
centre of gravity is

���������
3�N

�
. If we wish to compare all graphs as

objects of similar average size, scaling the coefficients by���������
N�3

�
gives a unit average sphere. For applications where the

coordinates are required to be more geometrically realistic, an
isotropic scaling factor of N

���
3



applied to each coordinate

would give a polyhedron with the expected
����
N



dependence

of the rms radius; the quantities R *AB and PIJK would then be
scaled by 3N

�������
3N



with respect to the values reported in

Table 1.
A similar result would be obtained by scaling the raw

coefficients to give a desired average bond length for the
polyhedron edges, as is often done to obtain a starting point
for further optimisation.
As Table 1 shows, the definition of R *AB produces in every

case a non-zero result for A including the eigenvalue �N/2 and
for B defined by the next or next-but-one available eigenval-
ue. Cage 1 and the fullerenes D2-C28, D2-C76, D3-C78, D2-C80
andD2-C84 all have closed � shells in H¸ckel theory (though in
all cases these are pseudo-closed[36] in that further formally
bonding levels are available for occupation) and in all butD2-
C84 the HOMO±LUMO transition has non-zero rotational
strength; for D2-C84 the HOMO and LUMO symmetries are
identical and hence the rotational strength vanishes identi-
cally, so that B must be taken as the LUMO�1. Cages 2 ± 4
and the icosahedral fullerene I-C140 (10) have open � shells in
simple H¸ckel theory and A comprises the full set of partially
occupied orbitals and B the first set of wholly unoccupied
orbitals.
For the purpose of identifying the Schlegel diagram with

either the enantiomer corresponding to the particular topo-

Table 1. Derivation of topological signs for the polyhedral graphs 1 ± 10.G is the point group defined by the topological coordinates of the graph. R*AB is the
defining topological rotational strength, which involves a product of moments of transitions from orbital set A to orbital set B. PIJK is the triple product
defining the sense of the path I� J�K as seen from the outside of the polyhedron constructed from the topological coordinates. The final column gives the
topological signs of the enantiomers associated with the Schlegel diagrams illustrated in Figures 2 ± 7. Unscaled topological coordinates are used throughout
the table.

Molecule G A B R *AB I J K PIJK Sign

C10 (1) C2 5 6 � 3.816� 10�2 7 8 9 � 1.1� 10�1 �(�)
C12 (2) C1 6 ± 7 8 � 2.681� 10�3 7 8 9 � 9.5� 10�3 �(�)
C16 (3) C3 7 ± 9 10 ± 11 � 8.148� 10�3 11 14 16 � 2.1� 10�2 �(�)
C28 (4) T 14 ± 16 17 ± 19 � 1.005� 10�2 3 2 1 � 2.4� 10�3 �(�)
C28 (5) D2 14 15 � 3.212� 10�3 3 2 1 � 1.1� 10�2 �(�)
C76 (6) D2 38 39 � 9.518� 10�5 1 2 3 � 7.8� 10�4 �(�)
C78 (7) D3 39 40 � 1.126� 10�4 1 2 3 � 7.3� 10�4 �(�)
C80 (8) D2 40 41 � 1.580� 10�5 1 2 3 � 7.3� 10�4 �(�)
C84 (9) D2 42 44* � 3.674� 10�4 1 2 3 � 7.4� 10�4 �(�)
C140 (10) I 70 ± 73 74 ± 77 � 6.834� 10�5 3 2 1 � 2.0� 10�4 �(�)
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logical coordinates produced by the diagonalisation, or with
its opposite, a triple IJK with clockwise orientation was
chosen in the central portion of each Schlegel diagram and the
triple product PIJK evaluated from the three-dimensional
coordinates. Thus the topological sign follows as the sign of
R *AB (if PIJK is negative) or its opposite (if PIJK is positive).
The final column of Table 1 shows the computed topological
signs.
Note that the results of this calculation differ in principle

from those of the various conventions already in use. The
topological signs attached to each Schlegel diagram (Table 1)
would remain the same under any scrambling of the vertex
labels. It is possible to label the fullerenes 6, 7 and 9 in the fA/
fC and A/C conventions, and the illustrated enantiomers are
fC, fC, fC and A, C, A, respectively, (compare our figures with
Figures 1 and 4 of ref. [19] and with Figures 4, 5 and 12 of
ref. [1a, b]). If a new chiral fullerene comes under discussion,
it is necessary to go through a rather complicated procedure to
find a canonical labelling before fA/fC and A/C descriptors
can be assigned and, as Thilgen and Diederich remark on
p. 141 of ref. [21] it is necessary to know which numbering
convention has been used. In contrast, the present procedure
delivers a �(� /� ) sign automatically for any chiral polyhe-
dron once the set of bond connections is specified. For
example, the topological sign of the enantiomer of D2

isolated-pentagon C80 8, corresponding to the Schlegel
diagram in Figure 5 is �(�).

Chirality Content of a Polyhedral Graph

Assignment of a topological sign to a chiral polyhedral graph
uses only one member of the set of pseudo-scalar quantities,
RAB. The set has the property that the sums

�
B

RAB are zero,

but quantities such as the sum of the squares
�
A

�
B

(RAB)2

are non-vanishing, provided that at least one topological
rotational strength is non-zero. It is plausible to consider such
quantities as measures of the ™chirality content∫ of the graph.
We take a natural root-mean-square definition:

�
�
����������������������������������������
2

P�P� 1�
�
A�B

�RAB�2
�

(17)

where P is the number of degenerate sets of adjacency
eigenvalues.
This purely topological quantity is presented for the graphs

1 ± 10 in Table 2, where the raw topological coordinates have
been normalised to an average unit sphere by the factor���������

N�3
�	 
3

. All definitions of chirality content suffer from a

degree of arbitrariness,[37] and it remains to be seen what �


predicts for example for the ™most chiral∫ fullerene(s). A
physical analogue of �
, can be envisaged: it could for instance
be obtained by measurement of rotational strengths of the set
of all possible transitions within the valence space of a chiral
system.

Conclusion

Chirality descriptors can be assigned for spheroarenes and
fullerenes without invoking any specific labelling scheme. The
purely graph-theoretical approach gives a sign for both the
three-dimensional polyhedron and its corresponding two-
dimensional Schlegel diagram, and thus could ™facilitate
communication between chemists∫[1b] of the identity of an
enantiomer. The approach further suggests a definition of the
chirality content for a polyhedron and its graph. The
discussion in this paper has been restricted to purely graph-
theoretical objects, using the properties of the adjacency
matrix to define an implicit geometry. It is perhaps useful to
note that the approach may be adapted to deal with ™real∫
molecules, using coordinates derived from experiment or
from calculation.
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