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The Geometric Structure of Deformed Nanotubes and the Topological Coordinates
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After summarizing the harmonic approach to topological coordinates and the null space embedding of graphs,
three-coordinated tiling of the plane by hexagons, pentagons, and heptagons are presented and used for the
construction of tubular, toroidal, and helical carbon structures. Physically realistic 3D geometries are formed
from the corresponding adjacency matrices, and the final structure was obtained with the help of Brenner-
potential based molecular mechanics methods.

INTRODUCTION clusters. Stone considered a spherical cluster, for which the
angular part of the wave function was separated from the

Geometric representation of graphs has a long hisidry. radial part. The angular part is a solution of

In chemistry it happens very often that only the topological
grrangement of the atoms is given, but one needs for further AW =—| (14 1)¥ (1)
investigations the Cartesian coordinates as well. The structure

of a molecule, cluster, or other mesoscopic system is givenwhere

by a graph, and one is looking for a three-dimensional

representation. In this chemical graph the atoms are the 1 9 . P 1 &

vertices and the interatomic bonds are the edges. The = sinb 90 sing Py + %ﬁ (2)
topological coordinate methéd gives a very useful pro- ¢
cedure for tackling this problem for fullerenes. Motivated
by the study of the Colin de Verdie numbef of graph it
was found that the null space of the generalized Laplacian

provides a planar embedding on the unit spisee further ¢, ster was then treated as an assembly of atoms with nuclei
references in ref 9. arranged on the surface of a sphere. Using linear combination
In recent publication8~*> we presented a method for of atomic orbitals (LCAO) Stone found that the wave

calculating topological coordinates of toroidal structures. In fynction for the system can be well approximated by treating
the present work we develop this method for topological the magnitude of the spherical harmonic functions at an atom
coordinates of nanotubes. A single-walled nanotube can besijte as the coefficient in an LCAO molecular orbital. That
generated by identifying two opposite edges of a paral- js if there aren atoms on a sphere of radiusand their
lelogram cut from a hexagonal honeycomb lattice of carbon positions are described by the spherical coordinatésd),

is the Laplace operator in spherical coordinates. The solutions
of eq 1 are theYn(0,¢) spherical harmonics labeled by
integer quantum numbefé=0) andm (- | < m =< |). The

atoms!? It is known that the positive Gaussian curvature in j = 1, 2 _.n, then
the carbon structures arises from the substitution of some
. . _ m
hexagons by pentagons and the negative curvature arises 0 = z Mg, = z Y, (6., $)o; 3)
I |

from the substitution by heptagoffst® Thus a polyhex

carbon nanotube transforms to a deformed nanotube by

pentagonal and heptagonal substitution. Here we shall studyare the LCAO molecular orbitals. Theg atomic orbitals are

especially the helical and toroidal deformations. Although sorbitals, or they are directed inward to the origin or outward

both of them are already studied in the literattie&? here from the origin. In this reasoning Stone supposed further

we present a general description after summarizing thethat there was no mixing between orbitals which diffet in

topological coordinate method for fullerenes and the null or mand that a set of orbitals with a givéshared the same

space embedding of graphs. energy. So there is one orbital, t8 which is| = 0, and
the three orbitals with = 1 are theP’ orbitals. The five

TOPOLOGICAL COORDINATES OF FULLERENES AND orbitals withl = 2 are theD? orbitals. By introducing the

THE NULL SPACE REPRESENTATION OF GRAPHS

1
The term of topological coordinates for fullerenes was Yim=2 2[(—= D)™, + Y, (4)
introduced by Manolopoulos and Fowfet,and it was
inspired by Stone’s wofR on bonding in transition-metal —and

1
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real forms of the spherical functioAswe obtain that for yi, andz topological coordinates of the carbon atoms in a
the lowest energy levelS’ the ¢ coefficients are constants  fullerene as
and for the 3-fold degeneratd®}’, P,°, and P, molecular

orbitals thec™, ¢, andc™ coefficients are the following: X = Slc:‘l (13)
c™=c"sin6, cos¢, (6) y. = S, (14)
cV=c"sin6; sing, (7) and

and 7= S (15)

ci*=c" cosb, (8) where§,=1or§ = 1/@ or any other appropriate

scaling factors.
It was found for the vast majority of fullerenes that=
k, = 3, andks = 4. There are also exceptions such as the
Cso isomer ofD, symmetry withk; = 2, k, = 4, andk; = 5.
Px Now let us turn to the null space representation of gr&phs.
X =T —=rsin6, cosg, 9) This representation was motivated by the study of;i{(®)
c” ' ' Colin de Verdiee parametérof the graphG. Let G =
(V, E) be an undirected graph, assuming tWat {1,...n}.
i ) ) Thenu(G) is the largest corank (the multiplicity of thie=
Yi=r-—5=rsing;sing, (10) 0 eigenvalue) of any symmetric matricks = (M;)eR®
¢ such that: (M1). For ali, j with i = j; M; < 0if i and] are
and adjacent, andv; = O if i andj are nonadjacent; (M2M
has exactly one negative eigenvalue, of multiplicity 1; (M3).
c;iF’x There is no nonzero matrix = (X;)eR™ such thatMX =
Z =1 —5 =T cosb (11) 0 and such thak; = 0 wheneveii = j or M; = 0.
c There is no condition on the diagonal entrMg and the
Manolopoulos and Fowl&f supposed that if the atomic condition (M3) is called t_he Stron_g_ Arnold Property or the
positions of a spherical cluster can give good approximations St'ong Arnold Hypothesis. Condition (M1) means shortly
for the 3-fold degenerate®?, P,7, andP,” molecular orbitals tha_t the real ;ymmetrlc mqtrM is the shifted and negatlvely
then theP,¢, P,’, and P molecular orbitals of a spherical ~Weighted adjacency matrix of gragh Thus the Colin de

cluster can give good approximations for the atomic positions Verdiere parametey(G) is the largest multiplicity of the

From this construction it follows that the Cartesian
coordinates of the atoms in the cluster can be written down 2
as y

chy

t0o0. second eigenvalue of the shifted and negatively weighted
Let the atomic arrangement of a fullerene (spherical adjacency matrix if it satisfies the Strong Arnold Condition.
cluster) be given by an-vertex graptG = (V, E) whereV The other name of matriM satisfying condition (M1) is

is the set of vertices (set of atoms) aBds the set of edges ~ deneralized LaplaciatiWe say further that a vectarcker(M)

(set of interatomic bonds). Lek be the adjacency matrix ~"as minimal support ik is nonzero and for each nonzero
with elementsA; = 1 if i andj are adjacent andy = 0 vectoryeker(M) with suply) < suppx) one hassupiy)

otherwise. LetH be the Hkel Hamiltonian-matrix with ~ — SUPHX). B _
Hi = a = 0 andH; = —1 for bonding between atonisnd Lovész and Sghruver proved the following theorem.
j andH; = O otherwise. From this definition follows that _ 1heorem [Lovasz and Schrijver]. Let G = (V, E) be a
H = —A. It is assumed further that 3-connected planar graph, with= {1,...,n}. LetM = MV;
be a symmetricnxn matrix with exactly one negative
> ap=a3=...=a, (12) eigenvalue (of multiplicity 1), such that forj with i = j, if

i andj are adjacent thell; < 0 and ifi andj are nonadjacent
if ay is thekth eigenvalue oA andc* is the corresponding  M; = 0, and such thatl has corank 3. Then the null space
eigenvector. It is clear that is an eigenvector oH with keM of M gives an embedding of G in the sphefeas
eigenvaluely = —a.. As in the fullerenes each carbon atom follows: Leta, b, andc be a basis okerM, and fori €V let
has three neighboes = 3 andc = 1Wn(i=1,2,3,..n). O(i): = (&, by, ¢); thend(i) = 0, andW(i): = D(i)/||D()]]

This eigenfunction is theS” eigenfunction of H with embedsV in & such that connecting, for any two adjacent
eigenvaluel; = —3. All that remains is to identify th@?, verticesi, j, the points®(i) andW(j) by a shortest geodesic

°y, and P, eigenvectors o (of A). on &, gives a proper embedding & in S.

For any subseU of V let G| U denote the subgraph of In the proof of this theorem results were used froth,
Ginduced byJU. (That isG| U = (U, E'), whereE' = all the which are related to nodal domaine theoref&oughly
edges ofG that join two vertices inJ.) For any vectorc speaking, in the null space representation the multiplicity of
let supgc) denote the support o€, that is supgc): = the second eigenvalue of the negatively weighted adjacency
{i| ¢, = 0}. Furthermore, we denotpp (c): = {i| ¢ > 0} matrix M is maximal €3) and the basis vectors &&rv
andsupp (c): ={i| ¢ < 0}. The vectorc is bilobal if supc) are mostly bilobal. Iikeker(M) is not bilobal, there is always
has exactly two connected componenipp (c) andsupp (c). a bilobal basis vectareker(M) with G|supgy) € G|supgXx).

If ¢4, cfe, andc*e are the first three bilobal eigenfunctions The topological coordinate method uses directly the first three
of A or H than Manolopoulos and Fowler introduced the bilobal eigenvectors of the Huel HamiltonianH = —A.
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Figure 1. Tiling of the plane by heptagons and pentagdag.= Figure 3. Tiling of the plane by heptagons, hexagons, and
n. = 3, andl = 1. pentagonsla;| = n. = 7, andl = 3.
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Figure 2. Tiling of the plane by heptagons, hexagons, and Figure 4. Tiling of the plane by heptagons, hexagons, and
pentagons|a;| = n. = 6, andl = 2. pentagons|a;| = n. = 10, andl = 4.
As the corank oH < 3 they represent the basis vectors of topological structure of the torus is given by tGe= (V, E)
kemM after splitting up the second eigenvaluehf graph. LetA be the corresponding adjacency matrix and
Topological Coordinates of Tori and Nanotubeslin refs H = —A be the Hekel Hamiltonian-matrix. As before let

11 and 12 a method was presented for topological coordinatestt be thekth eigenfunction oH (of A) andAx (ax = —A) be
of toroidal carbon structures. Let us suppose that the the corresponding eigenvalue. We chose four bilobal eigen-
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Figure 5. Nanotube having the topological coordinates obtained
from parameters (4, 1, 0, 0, 5). The tiling is in Figure 4. with super
cell vectorsh; = a; andb, = 5a..

vectorsch, ¢, ¢fs, andck, and the topological coordinates
of the torus are calculated as

X =SC1+8CY (16)
y, = SC1+SCY 17)
z=SC¢ (18)

whereS,, S, S5, andS, appropriate scaling factors as before.
Concerning difficulties using only three bilobal eigenvectors
for the torus see ref 10.

In this formula the position of the pointis the sum of a
vectorR; = Ri(ci, cike) directed from the center of gravity
of the torus to a point on the circular spine and a vector
ri = ri(c*e, ck). If the radial vectorR; = Ri(ck, cke) and
ri = ri(cls, ¢k give a proper embedding of the graph in the
surface of the torus, then the radial vectBys= Ri(c/'¢, cik)
andr; = ri(c, ¢'2) give a proper embedding too, but usually
the radial vector®; = Ri(c's, ¢') andr; = ri(c'e, ¢) give

LAszLO AND RASSAT

Figure 6. The final structure after molecular mechanical relaxation
of the topological coordinates of Figure 5 is a toroidal structure.

As our purpose is to find appropriate Cartesian coordinates
we scaled thé;, r; position vectors individually in order to
obtain the relation®R = |Rj| andr = |rj| by taking the
average values ofR;| and |rj] and not changing the
directions. By introducing the; azimuthal angles between
the X axis and the direction of the vectoRs we can write
Ri = (R cospi, R sing;). With the help of the angleg; the
torus can be transformed into a nanotube by the relations
xi = Scks, yi = Sek¢, andz = R¢y. That is the topological
coordinates of a nanotube obtained from the torus are the
following:

X = S$,C (19)
¥ =SC" (20)
z = Rarccos§Cl/R) if Cl2> 0 (21)
and
z = R(27 — arccos§Cl/R)) ifC2<0  (22)

A similar formula can be written down if we define the
origin of the anglesp; at an anglea. measured from the
direction of theX axis in the torus.

RESULTS

The G = (V, E) graph of a polyhex carbon nanotube and
a polyhex carbon torus can be obtained from a hexagonal
graphite sheet generated from two unit cell vectars=
a(v/3/2, 1/2) anda, = a(v/3/2, — 1/2)22 Each unit cell
contain two atoms at positions (0, 0) anal 0). Then a
parallelogram is constructed from the vectbis= na; +

an improper embedding. These results show that the pairsma; andb, = pa; + ga, wheren, m, p, andq are integers.

of eigenvectorsds, ¢k and ¥, c4) might be the corre-

We shall call this parallelogram super cell. The gr&pbf

sponding eigenvectors of two 2-fold degenerated eigenvaluesthe nanotube is obtained by identifying two opposite edges

of a matrixM defined in a similar way as in the case of the
null space embedding of planar graphs.

of the parallelogram, and identification of each pair of
opposite edges yields the graghof a torus. It is known
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{ Figure 8. The final structure after molecular mechanical relaxation
of the topological coordinates of Figure 7 is a helical structure.

in the unit-cell. If the unit-cells are marked by the positive
integersl = 1, 2,..., thenn, = (I — 1)2 + 3 if | is even
[ number and, = (I — 1)2+ 4 if | is odd number. As in the
case of polyhex lattice we can define the super cell
parallelogram by the vectors; = na; + ma, and b, =
pa; + ga;, wheren, m, p, andq are integers. Identification
( of the opposite edges gives the graph= (V, E) of the
parametersl(n, m, p, g). Figure 5 shows the nanotube with
the parameters (4, 1, 0, 0, 5) and calculated by the egs 19
22. Thus the lattice of Figure 4 was used, with the super
cell vectorsh; = a; andb, = 5a,. The vectord, andb, are
{ perpendicular to each other, abglis parallel with the lines
of heptagons and pentagons. After obtaining the topological
coordinates for a given super cell of parametérs,(m, p,
g) in a tiling, the final structure was reached with the help
of a molecular mechanics method based on the Brenner
potential?® In this relaxation process we supposed interac-
tions only between the first neighbors determined by the unit-
cells of the tiling. From the topological coordinates of Figure
5 we obtained the toroidal structure of Figure 6. In this open
Figure 7. Nanotube having the topological coordinates obtained torus the pentagons are at the places of positive Gaussian
from parameters (4, 1;-1, 5, 5). The tiling is in Figure 4 with  curvatures, and the heptagons are found at the negative
super cell vectorg; = a; — a, andb, = 5a; + 5a,. Gaussian curvatures.
that the pentagonal defects in the polyhex planar graphite Let us see what happens if we chose the super cell of
sheet produce positive Gaussian curvature and that the effecpbarameters (4, 1;-1, 5, 5) with the tiling of Figure 4 and
of heptagonal defects can be negative curvattite. with super cell vectord; = a; — a, andb, = 5a; + 5a,.

In Figures 4 periodic tilings are shown containing Now b, is not parallel with the lines of pentagons and
hexagonal pentagonal and heptagonal faces. As for the graptheptagons, but it is perpendiculartip Figures 7 and 8 show
G = (V, E) we need only the topological structure; the lattices the structures obtained before and after optimization, re-
are presented in a stylized form after KirByThe unit-cells spectively. As the vectds, is not parallel with the lines of
are determined by the horizontal vectaand vertical vector pentagons and heptagons, we obtained a helical structure. If
a,. The heptagons and pentagons are placed in verticalthe graphG = (V, E) is constructed from a purely polyhex
columns. Thela;| length of a; is equal to the distance tiling, the relaxed structures always remain nanotube as there
between two horizontal lines in the column of heptagons and are not pentagons and heptagons that are necessary for
lai| = ne, wheren. equals to the number of vertical columns positive and negative Gaussian curvatures.
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In conclusion we can say that using a given periodic tiling

by hexagons pentagons and heptagons, the final relaxed
structure depends on the tiling and on the particular position

of the super cell.
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