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Abstract 
      We review  the most important experimental and 
theoretical results obtained for fullerenes, nanotubes, 
various hexagonal and non hexagonal 2 dimensional 
carbon materials, Haeckelite structures and nanotube 
junctions. We present various algorithms for generating
the connectivity structures and the Descartes coordinates
of the carbon atoms. We present that the topological 
coordinate method can give good Descartes coordinates
for fullerenes nanotubes, toroidal, helical and planar 
arrangement of carbon atoms. Two algorithms is 
presented for constructing junctions between nanotubes 
of any chirality and diameter. 
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1. Introduction 
 In the study of various carbon structures is inevitable the calculation of the 
Cartesian coordinates of the   atoms. We need them in the study of mechanical 
and electronic properties as well. One can find difficulties even in the case of 
fullerenes. These difficulties are grater in the case of more complicated 
surfaces with positive and negative Gaussian curvatures. Usually only the 
topological arrangement of the atoms is given by the neighboring structure of 
the atoms, but we need the Cartesian coordinates as well. A widely used 
procedure is to set a molecular mechanics program to minimize some 
parametrized potential energy function using the bonding connectivity as an 
input parameter. A much simpler approach is the topological coordinate 
method. An other task is the generation of the connectivity structure at 
nanotube junctions. There are several theoretical propositions for this problem, 
but most of them are applied for non chiral tubes that is for nanotubes with a 
mirror plane. 
 On carbon surface we mean such kind of atomic arrangement of carbon 
atoms where the atoms are on  a  2 dimensional (2-D) surface. 
 In mathematics 2 dimensional manifolds are used for describing two 
dimensional curved surfaces. The Gaussian curvature, or simply the curvature, 
of a surface is a measure of its intrinsic geometry. The curvature at a point is 
defined as the inverse of the radius of the best fitting circle to a given curve at 
this point. On a 2-D surface the maximum and minimum values of this 
curvature at a point are called principal curvatures k1, k2 in order. The 
Gaussian curvature k = k1 ·k2 is the product of the two principal curvatures. 
The plane and the cylinder both of them have Gaussian curvatures k = 0 and 
they can be covered by hexagonal carbon structures resulting  the graphene 
sheets and the carbon nanotubes. The Gaussian curvature of the sphere is 
positive     (k > 0), and for constructing the spherical fullerenes we need 12 
pentagons as well. Positive Gaussian curvature can not be obtained using only 
hexagonal structures. If the number of the atoms in a polygon is greater than 
six we can obtain the surfaces with negative Gaussian curvature. Such kind of 
surfaces have saddle points. At saddle points the center of the two best fitting 
circles are at different sides of the surface.  
 In the next paragraphs after reviewing the experimental and theoretical 
results on the topics of carbon surfaces, first we describe some geometrical and 
topological properties of these structures. That is carbon structures where the 
carbon atoms are on curved surfaces. Then the topological coordianate method 
will be presented for fullerenes, toroidal, helical and hexagonal nanotubes and 
planar carbon surfaces.  In these paragraphs it will be shown that applying only 
the neighboring structure of the atoms, their Cartesian coordinates can be 
generated and we can have some insight even into the electronic structure of 
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the carbon material under study. In the next paragraph an algorithm will be 
presented for constructing Y and T –like junctions between two single wall 
nanotubes of any chirality and diameter. This algorithm is based on the 
geometric intersection of cylinders and it can describe most of the Y junctions 
obtained by the Ti-doped vapor catalyst method [62]. The following paragraph 
will contain an other algorithm for constructing junctions between nanotubes 
of any chirality. This method is based on the terminology of manifolds and on 
the local coordinates. In this method the neighboring structure of the atoms at 
the junction will be obtained as solutions of diophantic equations.    
 
2. Experimental and theoretical results for carbon 
surfaces 
2.1 Fullerenes  
      During experiments aimed at understanding the mechanisms by which 
long-chain carbon molecules are formed in interstellar space and circumstellar 
shells, graphite has been vaporized by laser irradiation, producing a 
remarkably stable cluster consisting of 60 carbon atoms [1].  It turned out that 
by this experiment Kroto et al. have found a new allotrope form of carbon. 
This molecule has the form of the European football or of a truncated 
icosahedron, that is a polygon with 60 vertices and 32 faces, 12 of which are 
pentagonal and 20 hexagonal.  Each carbon atom has three neighbors just   like 
in the graphite, but the structure has a cage like form of curved surface. After 
the architect Buckminster-Fuller the inventors gave the name Buckminster-  
fullerene to this C60 molecule. In the following years several other cage like 
carbon molecules were found. Each of them contain 12 pentagons and several 
hexagons. Now they are called fullerenes [2].  Putting pentagons into the 
hexagonal graphitic networks of carbon atoms the planar graphene sheet turned 
to be a curved surface. Here we imagine the bulk graphite as parallel graphene 
sheets. Krätschmer et al. [3] has synthesized the bulk  form of the C60 molecule 
opening the way to new possibilities of fullerene researches.  
 
2.2 Nanotubes   
       Iijima [4] has found that curved surfaces can be formed also by imagining  
rolling up graphene sheets  to cylinders, thus forming nanotubes of different 
chiralities. In the ideal case nanotubes have only hexagonal surface polygons.  
These needle-like tubes were produced in arc-discharge evaporation method 
similar to that used for fullerene synthesis [3].  Carbon-arc synthesis produces 
almost entirely multi wall nanotubes (MWNT). The multi wall nanotubes are 
formed on the carbon cathode and the single wall nanotubes (SWNT) grow in 
the gas phase [5,6]. Arc-discharge [7,8], laser ablation [9] and chemical vapor 
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depositions (CVD) [10] are the main methods for single wall nanotube 
production and they usually grow with catalytic particles. The HiPCO 
produces SWNTs by high-pressure catalytic decomposition of carbon 
monoxide [11].  
 
2.3 Periodic version of fullerenes  
       Mackay and Terrones [13-15] proposed  that assuming rings of 5, 7, and 8 
carbon atoms, in graphitic sheets, a great variety of finite and infinite structures 
can be postulated. Besides the shells of fullerenes, which have positive 
Gaussian curvature and the cylinders which have zero Gaussian curvature, 
infinite periodic networks with negative Gaussian curvatures are possible. 
They have discussed the geometric and physical properties of these 
hypothetical periodic graphite foams and they have found them more stable 
than the C60 molecule.  Vanderbilt and Tersoff [16] have constructed a periodic 
analog of C60, the C168 periodic carbon network. The unit cell of this structure 
contains 168 carbon atoms and   every atom is in a topologically equivalent local 
environment participating in one seven fold and two six fold rings. Namely the 
periodic C168 structure is obtained from the C60 by replacing the pentagons by 
heptagons and thus changing the positive Gaussian curvature to a negative one. 
They have calculated that the C168 has less formation energy than the C60 as its 
bond angles are closer to 120othan the angles of the C60 fullerene. The stability 
of similar periodic structures was studied by Lenosky et al. [17]. 
 
2.4 Toroidal and helical structures  
 Dunlap [18] has shown that different hexagonal carbon nanotubes can be 
connected together in a several number of ways using heptagon pentagon pairs. 
The stability of these joints was indicated by the fact that the binding energies 
of finite tori made using twelve such joints are bracketed by the binding 
energies of the two corresponding infinite tubes. Itoh, Ihara and Kitakami 
suggested a series of toroidal structures  C120, C360, C480, C840, C1080, C1440, C1560 
and C1920 containing fivefold six-fold and sevenfold carbon rings [19-20]. 
These structures have local topological structures of positive and negative 
Gaussian curvatures corresponding to the positions of pentagons and 
heptagons respectively. The same authors suggested helically coiled forms of 
nanotubes by appropriate distribution of pentagons heptagons and hexagons 
[21]. Toroidal and helical  structures containing only pentagons and heptagons 
has been describet by László and Rassat [22-24]. 
 While examining laser-grown single-wall carbon nanotube materials by 
scanning force and transmission electron microscopy Liu et al. observed 
circular formations of single wall nanotube ropes. They were convinced that 
many of the individual tubes in the circular ropes were perfect tori [25].  
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Ahlskog et al. observed ring formations from catalytically synthesized 
carbon nanotubes [26]. Martel, Shea and Avouris have found that single 
walled carbon nanotubes can be induced to organize themselves into rings or 
coils [27]. It was shown by Sano et al. that applying covalent ring closure 
reactions to commercially available carbon nanotubes ring shaped tubes     
can be obtained [28].  Further ring structures can be found in references 
[29,30]. 
 Amelinckx et al. studied the formation mechanism for catalytically 
grown helix shaped graphite nanotubes [31]. 
 
2.5 Haeckelite structures and nanocones  
 Terrones et al [32] incorporating five-, six-, and seven-membered rings in 
two dimensional carbon lattices proposed a new family of layered sp2-like 
carbon crystals., named Haeckelites. According their definition these crystals 
consist of equal numbers of pentagons and heptagons, in addition to any number 
of hexagons. The authors have studied three specific examples with different 
symmetries. All of them were found more stable than the C60 molecule. Because 
of the intrinsic metallic behavior of the Haeckelite sheets under study, all the 
tubes with any chirality and diameter were found metallic. Classical hexagonal 
nanotubes can be metallic or semiconductor depending on the chyrality. 
 Using pentagons and heptagons in a hexagonal lattice also nanocones has 
been suggested as possible carbon surfaces [33,34]. Graphitic cones has been 
produced by carbon condensation on graphite substrate [35], by pyrolysis of 
heavy oils [36] and by laser ablation of graphite targets [37]. 
 
2.6 Nanotube junctions and peapods  
       Scuseria [38] and Chernozatonskii [39] have shown that  with the help of 
extra heptagons nanotube junctions can be constructed. Single walled nanotube 
junctions between nanotubes of any chirality and diameter has been shown by 
László [40-43]. Zhou and Seraphin observed  L, Y and T patterns of nanotube 
branching produced from carbon arc-discharge by a graphitic anode with a 
hollow core in the center [44]. Nagy et al. observed Y-branching by scanning 
tunneling microscopy in single wall carbon nanotubes grown by thermal 
decomposition of C60 molecules [45,46]. Various nanotube branches were 
produced by pyrolysis as well [47-49]. Scanning tunneling microscopy (STM) 
and scanning tunneling spectroscopy (STS) measurements were published on a 
Y-branched carbon nanotube in ref. [50,51]. 
       Replacing the carbon-carbon bonds of a carbon architecture by SWNTs 
and the carbon atoms by Y junctions super carbon architectures can be 
generated. Such kind of carbon nanotube networks were suggested by Coluci 
et al. [52,53]. 
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 An other interesting carbon structures were found in 1998 the peapods 
[54]. We call peapods the encapsulated C60 molecules in carbon nanotubes. 
 Also the abovementioned examples show that carbon assumes a wide 
variety of different structures and forms. Each of them have unique physical 
and chemical properties giving potential applications in several fields [55]. 
Single wall carbon nanotubes have extraordinary mechanical properties. They 
can be used as reinforcement in composites. Their size and electronic 
properties make them possible building blocks in nano electronics and  
applications in display  and gas sensor production [56]. There are other special 
review articles about mechanical and electrical properties of nanotubes [57], 
structural properties of Haeckelite nanotubes [58], curved nanostructured 
materials [59], three-terminal junctions of carbon nanotubes [60,61].   
 
3. Geometry of the C60 molecule and hexagonal nanotubes  
3.1 The C60 molecule   
      We call a carbon structure carbon surface if the carbon atoms can be 
imagined being on a 2-dimensional surface. Thus the simplest carbon surface is 
the graphene sheet. The first curved carbon structure was found by production  
of the C60 molecule where the 60 carbon atoms are on the surface of a sphere [1]. 
This structure can be imagined as a truncated icosahedron (Figure 1.b.). In 
Figure 1.a. we can see a regular icosahedron. The regular icosahedron is one of 
the five platonic polyhedron. It has 12 vertices, 30 edges  and 20 equilateral 
triangles. A regular icosahedron with edge distance of 2 is given for example by 
the coordinates ( )1,,0 ±τ± , ( )τ±± ,0,1  and ( )0,1,±τ± , where ( ) 251+=τ  is 
the golden ratio (Figure 1a). The truncated icosahedron is obtained from the 
icosahedron by cutting off a pentagonal pyramid at each vertices (Figure 1.b).  
The Cartesian coordinates of the truncated icosahedron are calculated from those 
of the icosahedron in the following way.  Let ra and rb be the position vectors of 
two neighboring vertices of the icosahedron. The corresponding edge generate 
two vertices of the truncated icosahedron by the relations r1 = ra(1-q)+rbq and r2 
= raq + rb(1-q), where 0 < q < 0.5 is a real number.  As the icosahedron has 30 
edges the truncated icosahedron will have 60 vertices. As there are 12 vertices in 
the icosahedron the truncated icosahedron has 12 pentagons. Its 20 hexagons are 
obtained from the 20 regular triangles. 
 In Figure 1.b we can see that there are two kinds of edges on the truncated 
icosahedron, the edges between two hexagons and the edges between a 
hexagon and a pentagon. They have the same length for 3

1q = . 
 Kroto et al has produced the C70 molecule as well [1]. As it was mentioned 
before there  has been found other cage like molecules which are now called, 
the fullerenes.  Each of them have 12 pentagons and several hexagons.  
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                           a                                                                   b 

 
Figure 1.    Regular icosaderon (a) and the truncated icosahedron (b). 

 
3.2  Hexagonal nanotubes   

        Introducing two unit vectors ( )0,3a=1a  and ⎟⎟
⎠

⎞
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⎝

⎛
=

2
3,

2
3a2a  with inter 

atomic distance a on the graphene sheet and two integers k and 1 we can assign 
coordinates (k,1) to each hexagon of the sheet (Figure 2.a).  This coordinate 
system gives the position of each hexagon on the honeycomb lattice. Namely 
the center of the hexagon (k,1) is at the end of the position vector R = k a1 + a2.   
The unit vectors a1 and a2 define also the unit cell of the hexagonal lattice 
containing two carbon atoms of indices r = 1 and r = 2. Thus the two integers  
k and 1 are also the coordinates of the translated unit cells as well and (k,1,r) 
means the r-th atom in this unit cell. 
 On the hexagonal lattice the corresponding points of two parallel lines 
translated by an position vector R = k a1 + 1a2 lattice vector see the same 
environment. By  identifying them we can construct a cylinder by rolling up 
the lattice cut out by these lines.  This is why the hexagonal nanotubes are 
defined with the help of the chiral vector Ch  
 

21 a   a  C nmh +=                                                                                                 (1) 
 

where m and n are integers (Figure 2.). The chiral vector and the multiple of 
the translation vector T defines a rectangle which is the super cell in our 
rolling up construction. By identifying those two parallel lines of these 
rectangle which are parallel also with T one can construct a cylinder. The 
vector T is perpendicular to the chiral vector Ch and defined as  
 

( ) ( )[ ] R/dn2m ,m2n 21 aa-T ++=                                                                          (2) 
 

where d is the highest common divisor of (m, n), and dR = d if n-m is not a 
multiple of 3d and dR = 3d if n-m is a multiple of 3d [55]. Figure 2a shows  
quadrangle for constructing the nanotube with the parameters (m, n) = (2,6). 



I. László et al. 128

There are some special cases, the zigzag and armchair nanotubes with parameters 
in order (m,0) and (m, m) nanotubes. These nanotubes have at least one mirror 
plane. The other nanotubes without a mirror plane are the chiral nanotubes. On 
Figure 2 we show examples of chiral zigzag and armchair nanotubes. 
 

 

    a                             b            c           d     
 
Figure 2. (a) Coordinate system on a hexagonal lattice defined by the unit vectors a1 
and a2.  The chiral vector Ch = ma1 + na2, and the basic translation vector T is used for 
defining the quadrangle for constructing the nanotube with the parameters (m, n) = 
(2,6). (b) The chiral nanotube (m, n) = (2,6). (c) The zigzag nanotube (m, n) = (7,0). (d) 
The armchair nanotube (m, n) = (4,4). 
 
4. Topology of carbon surfaces  
      The Euler formula and its consequences [15,41,63] are very useful in the 
geometrical construction of fullerenes and other curved carbon surfaces. It states 
that, for any polyhedron homeomorphic to the sphere there is a relation between 
the number of faces F, number of edges E and the number of vertices V, as: 
 

2VEF =+− .                                                                                                   (3) 
 

The genus g of an orientable closed surface is defined as the number of handles 
and it is 0 for the sphere and 1 for the torus. If we define the Euler 
characteristic as 2(1-g) we obtain the Poincaré formula (or Euler-Poincare 
formula) for oriantable closed surfaces of higher genus as 
 

( )g12VEF −=+− .                                                                                          (4) 
 

If  ni is the number of faces with i vertices on their boundary, and each vertex 
has 3 neighbors, then: 
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2 ,    ∑=
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inF                                                (5) 

 

and thus the Poincaré formula has the following form 
 

( ) ( )g112n i6 i
i

−=−∑ .                                                                                      (6)
 

 

 There is not any constrain for the number of hexagons.  For fullerenes g = 
0 and from Equ. (6) we obtain: 
 

12...n7n6n5n4n3n2nnn2n3 13121110987543 =−−−−−−−−++ .                 (7) 
 

 As the right hand side of this Equation equals to the positive number 12 and 
minimizing the bonding energy we do not allow triangles and squares, the 
fullerene must have at least 12 pentagons as the coefficient of the other polygons 
are negative. A nanotube which is closed by two half spheres is also 
homeomorphic to the sphere and Equ. (7) is valid for nanotubes with two closed 
ends. In the least strained case one can suppose that it has only 12 pentagons and 
the other polygons are hexagons, that is each half spheres have six pentagons. A 
junction of three nanotubes with three closed ends can also be imagined as a 
surface homeomorphic to the sphere. Because of the previous reasoning the three 
half spheres have 18 pentagons from Equ. (7) follows that n5 – n7 = 12 and n7 = 6 
if we allow only pentagons and heptagons in the least strained case. Thus a 
nanotube junction between three polyhex nanotubes must have at least 6 
heptagons if only hexagons and heptagons are allowed. It is supposed that the 
pentagons at the ends are cut off with the three half spheres and we are speaking 
about a junction between three hexagonal nanotubes of open ends [40,41]. The 
same results were found in references [63-65]. Using the same ideas we obtain the 
following general relation for a connected nanotube network with e open ends 
 

( ) ( ) e6g112n i6 i
i

−−=−∑ .                                                                                       (8) 

 

For the special case of nanotube junction of three polyhex and open ended 
nanotubes g = 0, e = 3 and Equation (8) turns to the relation  
 

6...76543223 13121110987543 −=−−−−−−−−++ nnnnnnnnnn                (9) 
 

5. Adjacency matrices for describing the connectivity 
structures   
5.1 Fullerenes   
       We describe the atomic arrangement of a 2-dimensional carbon surface by 
the graph G = (V, E) where V is the set of vertices i and E is that of the edges 



I. László et al. 130

(i, j). The vertices correspond to the carbon atoms and the edges to the first 
neighbor bonds. The A adjacency matrix and its Aij matrix elements are 
defined by the relations, Aij = 1 if  (i, j) ⊂ E and Aij = 0 otherwise. From 
Equations  (3) and (5) follows: 
 

V
2
3E = ,  

2
V2F +=  .                                                                                     (10) 

 

Thus for fullerenes 
 

12n 5 =  ,  10
2
V12Fn 6 −=−= .                                                                     (11) 

 

 From practical point of view the simplest way to construct a fullerene 
polyhedron is based on the following spiral conjecture [2]. 
 Spiral conjecture[2]:The surface of a fullerene polyhedron may be 
unwound in a continuous spiral strip of edge-sharing pentagons and hexagons 
such that each new face in the spiral after the second shares an edge with both 
(a) its immediate predecessor in the spiral and (b) the first face in the 
preceding spiral that still has an open edge.  
 If the number of vertices V is given, from Equations (10,11) follows the 
number of faces F, that is the number of pentagons and the number of 
hexagons. According to the spiral conjecture the spiral of the polyhedron is 
represented by a one-dimensional sequence of 5s and 6s which give the 
positions of pentagons and heptagons. The number of 5s is n5 = 12 and the 

number of 6s is 10
2
Vn 6 −= . The spiral can be given by a series of 12 

numbers, where each number is the serial number of a pentagon in the spiral of 
polygons. Once a tentative spiral sequence of 5s and 6s has been constructed, 
the next task is to check whether it winds up to give a fullerene or not. If not, 
one has to try by an other sequence of pentagons and hexagons using the same 
number of faces F, which is determined by the number of vertices V. In the 
winding up procedure it is useful to construct the dual of the fullerene under 
study. The vertices of a polyhedron correspond to the faces of its dual, and vice 
versa. If the winding up procedure is successful the graph G = (V, E) of the 
fullerene is constructed and its adjacency matrix A can be given. Let us 
supposed that we want to construct a fullerene C100 with V = 100 carbon atoms. 
From Equ. (10) follows that F = 52. 
 In Figure 3.a we can see the spiral (1,7,12,19,25,28,30,33,36,41,48,50) of 
a C100 fullerene. 
 In ref. [2] there are more details about the spiral algorithm and its 
consequences. This book contains also Fortran computer programs for this 
method. The spiral conjecture did not failed for constructing fullerenes up to 100 
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Figure 3. (a) The spiral (1,7,12,19,25,28,30,33,36,41,48,50) of a C100 fullerene on its 
graph G (V, E) obtained by the spiral algorithm and the (b) corresponding C100fullerene. 
 
carbon atoms and the smallest tetrahedral fullerene without a spiral is a C380 
fullerene [2]. 
 
5.2 The adjacency matrix of nanotubes, toroidal and planar 
structures   
 We can use the rolling up method of the hexagonal nanotube in the case of 
non-hexagonal nanotubes as well for constructing the connectivity network of 
the structure and for its adjacency matrix A. The connectivity network is 
determined by the number of unit cell atoms and by their neighbors. From 
topological point of view it is supposed that a neighbor of a given atom is in 
the same unit cell as the given atom, or in one of the 8 neighboring cells [66].  
Although an affine transformation does not change the neighboring structure of 
the connectivity network, it can produce, however, orthogonalized and 
normalized unit cell vectors. Thus we suppose further that the unit cell is 
described by two orthonormal vectors a1 and a2. Let k, 1 and r be three integers 
then the vector ka1 + 1a2 points to the unit cell (k, 1), and (k, 1, r) means the r-
th atom in this unit cell in the same way as before in the case of polyhex 
structures. The neighbors of the atom (k, 1, r) can be in the unit cells (k, 1), (k 
+1, 1), (k -1, 1), (k,1 + 1), (k, 1-1), (k +,1 + 1), (k-1,1-1), (k,  +1, 1-1) and (k-1, 
1+1) where the corresponding types of neighbors in order are of type t =0, 1, 2, 
3, 4, 5, 6, 7 and 8. The parameter t is the index of the unit cell and its 8 
neighbors. Figure 4 shows non-hexagonal unit cells containing 8, 24, 32 and 
60 atoms. 
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 Let us define the super cell with a parallelogram of side vectors b1 = ma1 + 
na2 and b2 = pa1 + qa2 where m, n, p and q are integers. The unit vector a3 = a1 

× a2 be the vectorial product of the vectors a1 and a2, and thus we obtain the 
relation b1 × b2 = (mq-np) a3. For the scalar product of vectors a1 and a2 we 
have ai .aj = δij. From the above definitions follows that for the definition of 
the unit vectors a1 and a2 we did not need coordinates. 
 We say that an atom of coordinates (k, 1, r) is in the super cell of vectors   
b1 = ma1 + na2 and b2 = pa1 + qa2 if with c = ka1 + 1a2 the following relations 
are valid [66]: 
 

( ) 0 np-mq >=⋅× 321 abb                                                                                       (12) 
 

( ) 0 nk-ml ≥=⋅× 31 acb                                                                                   (13) 
 

( ) 0 lp-kq ≥=⋅× 32 abc                                                                                    (14) 
 

( ){ } 0    q)m-(l-p)n -(k  >=⋅× 312 abb-c                                                              (15) 
 

{ } 0    m)-q(k - n)-p(l   )( >=⋅× 312 ab-cb                                                          (16) 
 

 
 

a 
 
 
 
 
 
 
c 

 
 
 
 
 
 

b
 
 
 
 
 
 
d

 
 
Figure 4. Neighboring structure of non-hexagonal unit cells containing (a) 8, (b) 24, (c) 
32 and (d) 60 atoms. 
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or 
 

( ) 0 np-mq <=⋅× 321 abb                                                                               (17) 
 

( ) 0 nk-ml ≤=⋅× 31 acb                                                                                   (18) 
 

( ) 0 lp-kq ≤=⋅× 32 abc                                                                                    (19) 
  
( ){ } 0    q)m-(l-p)n -(k  <=⋅× 312 abb-c                                                          (20) 

 

{ } 0    m)-q(k - n)-p(l   )( <=⋅× 312 ab-cb                                                         (21) 
 
If the network of a nanotube is constructed by identifying the two b2 sides 
(they are parallel with the vector b2) then the atoms (k1,11,r1) and  (k2,12,r2) are 
identified if r1 = r2 and for the vectors c1 = k1a1 + 11a2  and  c2 = k2a1 + 12a2 the 
following relation is valid: 
 

 u    - 112 bcc =                                                                                                   (22) 
 

where u is an integer   in the range –1 ≤ u ≤ 1. 
 In the case of toroidal structure each opposite sides of type b1 and b2 are 
identified and the condition for identifying the two atoms(k1,11,r1) and   
(k2,12,r2) is   r1 = r2 and 
 

2112 bbcc   v u    - +=                                                                                         (23) 
 
with integers u and   v in the ranges  –1 ≤ u ≤ 1 and –1 ≤ v ≤ 1.  
 The 2-dimensional planar structure is given by the graph of the super cell 
without rolling up. 
 From the Equations (12-23) follows that we do not need the special 
Descartes coordinates of unit cell atoms in a plane for the determination of the 
connectivity graph G = (V,E). The initial data contain only the integers m, n, p, 
q and the list of neighbors for each unit cell atoms. A neighboring atom is 
described by two numbers the serial number r and the type number t. After 
constructing the graph G = (V,E) for the structure in study we can construct its 
adjacency matrix  A. 
 
6. Topological coordinates    
6.1 Topological coordinates for fullerenes    
 With the help of the adjacency matrix A we can describe the topological 
structure of the fullerene given by a graph G = (V, E) but for further 
investigation usually we need the Cartesian coordinates of the atoms as well. A 
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simple solution to this problem is the topological coordinate method proposed 
by  Fowler and Manolopoulos [2, 67]. The idea of the topological coordinate 
method was inspired by Stone’s work [68] on bonding in transition-metal 
clusters. Here we give only the recipe for topological coordinates. The 
explanations can be found in references [2,23,67, 69-70]. The topological 
coordinate method is based on the so called bi-lobal eigenvectors of the 
adjacency matrix A of the graph G = (V, E). Eigenvectors having this bi-lobal 
property can be identified by the graph-disconnection test [69]: for a candidate 
eigenvector, color all vertices of G = (V, E) bearing positive coefficients black, 
all bearing negative coefficients white, and all bearing a zero coefficient grey; 
now delete all grey vertices, all edges connecting a black to a white vertex; if 
the graph now consists of exactly two connected components, one of black and  
one of white vertices, then the eigenvector is of bi-lobal. 
 We arrange in descending order the n = V eigenvalues ak of the adjacency 
matrix A as: 
 

n321 a...aaa ≥≥≥>                                                                                       (24) 
where ck is the eigenvector with eigenvalue  ak. The first three bi-lobal 
eigenvectors ck1, ck2 and ck3 determine the (xi,yi,zi) topological coordinates of 
the i-th atom by the relations: 
 

1k
i1i cSx =                                                                                                         (25) 

 
2k

i2i cSy =                                                                                                         (26) 
 

3k
i3i cSz =                                                                                                         (27) 

with the scaling factors 1S =α  or 
α

−
=α

k1 aa
1S . The most realistic picture 

of the fullerene can be found by the scaling factor 
α

−
=α

k1 aa
1S  [71]. In 

Figure 3.b is shown the picture of the fullerene C100.   Its coordinates are 

topological coordinates obtained by the scaling factor 
α

−
=α

k1 aa
1S  from the 

spiral (1,7,12,19,25,28,30,33,36,41,48,50). 
 
6.2 Topological coordinates for torus      
 Let us suppose that the adjacency matrix A describes the topological 
structure of a torus given by the graph G = (V, E). The position of a point on 
the surface of a torus is given as the sum of two vectors R and r. The vector R 
points from the centre of gravity of the torus to a point on the circular spine, 
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and the vector r from there to the surface. One can suppose that the vector R is 
in the xy plane and r is in the planes perpendicular to the plane of R. Thus 
these two vectors are two dimensional planar vectors, each of them can be 
described by two bi-lobal eigenvectors. If ck1, ck2, ck3 and ck4 are for bi-lobal 
eigenvectors of A then the (xi, yi, zi) topological coordinates of the i-th on the 
torus is given   by the relations [23,69]: 
 

)1( 41
41

k
i

k
ii cScSx +=                                                                                         (28)  

 

)1( 42
42

k
i

k
ii cScSy +=                                                                                        (29) 

 
3

3
k
ii cSz = .                                                                                                       (30) 

 

Namely 1k
i1i cR = , 2k

i2i cR = , 3k
i1i cr =  and 4k

i2i cr = . The scaling factors are the 
same as in the case of fullerenes or the 1k

i1i cR = , 2k
i2i cR = , 3k

i1i cr =  and 
4k

i2i cr =  parameters are scaled in order to obtain the relations R = ⏐Ri⏐ and     
r = ⏐ri⏐where R and r are some average values [23].  Using the non hexagonal 
unit cell of Figure 4.d. we have calculated the topological coordinates of the 
tori with the parameters (m, n, p, q) = (1,0,0,5) (Figure 5.a) and with the 
parameters (m, n, p, q) = (1,-1,5,5) (Figure 5.b ). 
 

       a                                               b  
 
Figure 5. Topological coordinates for tori with parameters (m, n, p, q) = (1,0,0,5) (a) 
and (m, n, p, q) = (1,-1,5,5) (b). The unit cell is in Figure 4.d. 
 
6.3 Topological coordinates for nanotubes 
 After cutting the torus by a plane it can be transformed into a tube by the 
following transformations [23,66,71]: 
 

3
3

k
ii cSx = ,                                                                                                       (31) 
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4
4

k
ii cSy = ,                                                                                                      (32) 

  

( )R/cSarccos R  z 1k
i1i =    if     0  c 2k

i ≥                                                               (33)  
 

( ( ) )R/cSarccos  - 2R  z 1k
i1i π=    if     0   c 2k

i <                                                 (34)  
 
Here the radius R governs the size of the torus.  The vectors ck1, ck2, ck3 and ck4 
are the four bi-lobal eigenvectors of the adjacency matrix G = (V, E)  
characterizing the torus with the parameters (m, n, p, q). From this construction 
follows, that the obtained tube has the same (m, n, p, q) parameters. The 
relations (31-34) transform the tori of Figure 5. to the tubes with the 
parameters (m, n, p, q) = (1,0,0,5)  (Figure 6.a ) and (m, n, p, q) = (1,-1,5,5)  
(Figure 6.b ). 
 Supposing forces between the carbon atoms, the nanotubes obtained by the 
topological coordinate methods of Eqs . (31-34) are not equilibrium structures.  
We obtained the final relaxed structures with the help of a molecular 
mechanics method based on the Brenner potential [72]. In this molecular 
mechanics calculation we supposed interactions only between first neighbor 
 

  a                  b  
 
Figure 6. Topological coordinates for nanotubes with parameters (m, n, p, q) = 
(1,0,0,5) (a) and (m, n, p, q) = (1,-1,5,5) (b). The unit cell is in Figure 4.d. 
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atoms defined by the G = (V, E) graph of the tube. Here we remark once more 
that the bi- lobal eigenvectors were obtained from the graph of the auxiliary 
torus. Figure 7 shows that after relaxation the tube of parameters (m, n, p, q) = 
(1,0,0,5) turned to be a torus (Figure 7.a) and that of parameters (m, n, p, q) = 
(1,-1,5,5) turned to be a helical structure (Figure 7.b). In both cases the unit 
cell was the same (Figure 4.d). This transformation can be explained by the 
fact that the pentagons correspond to the positive Gaussian curvatures and the 
heptagons to the negative ones. Thus using a unit cell containing various 
polygons the shape of the final relaxed structure depends on the unit cell and 
on the (m, n, p, q) parameters (Figures 7-8). 
 

        a                                   b  
 
Figure 7. Relaxed  structures with parameters (m, n, p, q) = (1,0,0,5) (a) and (m, n, p, 
q) = (1,-1,5,5) (b). The unit cell is in Figure 4.d. 
 

 

 a                               b                              c  
 
Figure 8. Relaxed structures with parameters (m, n, p, q) = (5,5,-1,1) (a),  (m, n, p, 
q) = (4,2,-2,1) (b), and (m, n, p, q) = (3,1,-3,1) (c). The unit cell is the same for 
these structures but different of Figure 4.d. 
 
6.4 Topological coordinates for planar structures     
 On the same way as the torus was transformed to a tube we can transform 
the tube to a planar structure and we obtain the topological coordinates for the 
planar structure as [23,66,71]: 
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( )r/cSarccosr   x 4k
i4i =    if     0  c 3k

i ≥ ,                                                              (35)  
 

( )r/cSarccosr -  x 4k
i4i =  if     0    c 3k

i < ,                                                            (36) 
 

0,   yi =                                                                                                             (37) 
 

( )R/cSarccos R  z 14k
i1i =    if     0  c 2k

i ≥ ,                                                            (38)  
  

and 
 

( ( ) )R/cSarccos  - 2R  z 1k
i1i π=    if     0   c 2k

i <                                                 (39)  
 

The radii R and r determine the size and aspect ration of the auxiliary torus, 
and ck1, ck2, ck3, ck4 are  four bi-lobal eigenvectors of its adjacency matrix. 
 In Figure 9. we can see  the topological coordinate structures of Figure 4. 
In Figure 4. only the connectivity network is given. Using Equations (35-39) 
we obtained Descartes coordinates for drawing unit cells containing non 
hexagonal polygons. Further results concerning topological coordinates, 
toroidal and Haeckelite structures can be found in references [58,73-78]. 
 

 

 
 
 
 
 

a 
 
 
 
 
 
 
 
c 

 
 
 
 
 
 

b 
 
 
 
 
 
 
d 
 

 
 
Figure 9. Planar topological coordinates of the unit cells of Figure 4.a (a), Figure 4.b 
(b), Figure 4.c (c) and Figure 4.d (d). 
 

7. Construction of nanotube junctions  
7.1 Nanotube junctions as geometric intersection of cylinders 
 Although there are various theoretical propositions for nanotube junctions 
[63-65,79-88], all of them are applied for non chiral structures. Here we 
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present an algorithm for constructing junctions between single wall nanotubes 
of any chirality and diameter [40,41]. This method is based on the Geometric 
Intersection of Cylinders (GIC) and it can describe most of the Y junctions 
obtained by the Ti-Doped Vapour Catalyst (TDVC) method [62]. Namely in 
this method new nanotube branches are attached to already developed 
nanotubes and also the CIG method can be interpreted as attachment of one 
tube to the other one.  
 Let us suppose that we want to find the junction between the nanotubes 
(m1, n1) and (m2, n2). As the nanotube can be thought of as a cylinder having 
the hexagonal network on its surface, the junction will be found with the help 
of intersection of two cylinders. In our notation the line of intersection on the 
first cylinder is intersection 1 and on the second cylinder is intersection 2. The 
(u, v) Descartes coordinates with axes b1 and b2 for intersection 1on the 
rectangle of the first cylinder are: 
 

11ϕru =                                                                                                            (40) 
 

( ) ( ) ( )
( ) ( )αα

αϕϕπ
tansin

coscoscos 11122 rrr
v −

+−−
=                                               (41)  

 

and 
 

( ) ( ) ( )
( ) ( )αα

αϕϕ
tansin

coscoscos 11122 rrrv −
+−

=                                                     (42) 

with 
 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

2

11
2

sinarcsin
r

dr ϕ
ϕ                                                                              (43) 

 

where (r1, ϕ1)  and (r1, ϕ2)  are the cylindrical coordinates of cylinders 1 and 2. 
The angle and distance between the axis of the two cylinders are in order α and 
d. We allow not intersecting axes too. It is supposed further that r2 ≤ r1, d ≤⏐ 

(r1−r2)⏐ and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
≤≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

1

2
1

1

2 arcsinarcsin
r

rd
r

rd
ϕ . 

 

 The same notation is used for the  (u, v) coordinates of intersection 2 on 
the second cylinder rectangle. That is   
 

22ϕru =                                                                                                            (44) 
 

( ) ( ) ( )
( ) ( )αα

αϕϕ
sinsin

coscoscos 12211 rrr
v −

−
=                                                         (45) 
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with 
 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

1

22
1

sinarcsin
r

dr ϕ
ϕ                                                                              (46) 

 

where − π ≤ ϕ ≤ + π. 
 These intersection lines cut several carbon-carbon bonds. The vertical and 
horizontal translations of the intersection lines correspond to axial rotations or 
translations of the cylinders. By appropriate translations of the cut lines we can 
reach the case where the number of cut bonds will be the same on the two 
cylinders. At this case the two cylinders can be joined together along the cut 
lines and the corresponding half bonds can be joined together as well and the 
junction can be constructed. The junction of Figure 10 was constructed 
between the nanotubes (18,2) and (10,5) with the parameters α = 90o and d = 
0.0Å. See further cases and explanations in references [40,41]. 
 
7.2 Nanotube junctions using local coordinates   
 In the previous paragraph we constructed nanotube junctions between two 
nanotubes. At a junction, however, can join three or more nanotube as well. In 
the present paragraph we shall explain the basic ideas of an algorithm that can 
be used for constructing nanotube junctions between two or more nanotubes of 
any chirality and diameter, This algorithm will be based on the terminology of 
manifolds and detailes can be found in references [43,89]. The manifold is        
a space that, like the surface of the Earth, can be covered by a family of local  
 

 
 
Figure 10. Nanotube junction constructed by intersection of cylinders between the 
nanotubes (18,2) and (10,5) with the parameters α = 90o and d = 0.0Å. The junction 
contains 6 heptagons as non-hexagonal polygons. 
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coordinate systems. In our case the local coordinate system will be the 
coordinate system of the hexagonal lattice as defined in Figure 2. If we have for 
example three tubes at a junctions, we have also three coordinate systems as 
well, that is we have three local coordinate systems. By constructing the junction 
one have to tell in which way can we go from one coordinate system to the other. 
As we suppose that the non hexagonal polygons are at the boundaries of the 
coordinate systems each of them have two coordinates originated from the 
neighboring tubes. The common non hexagonal and hexagonal polygons can be 
visualized as three ribbons, where the polygons are given by the relative local 

coordinates  ⎟
⎟

⎠
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For the junction of three nanotubes ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

1

1

n

m
, ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

2

2

n

m
 and ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

3

3

n

m
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diophantic equations between the parameters of the ribbons k =1, 2 and 3 
[43,89]: 
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generated rotation angles. The number of polygons on ribbon k is Nk and αij > 0, 
βij < 0 are the direction angles of the ribbons. More details can be found about 
the solutions of the above mentioned Equations (48-54) in references [43,89].  
 In Figure 11 three nanotube junction can be seen between various chiral 
nanotubes. All of them was constructed by the local coordinate method. 
Figures11.b and 11.c show that the equilibrium structure of the junctions 
depend on the positions of the non hexagonal nanotubes. In these junctions the 
tubes are the same but the positions of the six heptagons are different. 
 

     a                             b                        c  
 
Figure 11.Various nanotube junction constructed by local coordinates of Equations (48-
54). The junctions contain 6 heptagons as non-hexagonal polygons. Junctions between 
nanotubes (10,0), (10,1) and (10,2) (a); (9,6), (8,7) and (10,5) (b); (9,6), (8,7) and (10,5) (c). 
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8. Conclusions    
 In the present chapter we have shown  several algorithms for generating 
the connectivity structures of fullerenes nanotubes, nanotube junctions and 
other hexagonal and non hexagonal carbon surfaces. It was shown that from 
the topological structures reliable Descartes coordinates can be constructed 
with the help of the topological coordinate method. Using this topological 
coordinates preliminary results can be obtained also for the electronic structure 
[90]. We presented also two algorithms for constructing  junctions between 
nanotubes of any chirality and diameter. 
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