1 Green-function matrices in the TB formalism

In the tight binding (TB) picture the matrix of a Hamiltonian H is in the form

$$H = \{ H^{ij} \}, \text{ where}$$

$$H^{ij} = \delta_{ij} \varepsilon_{i} + \gamma^{ij},$$

(1)

(2)

Single and double underlines denote matrices in angular momentum space and site-angular momentum space, respectively. The size of each angular momentum block is determined by the dimension of the basis centered at each site i. In the case of 3d transition metals e.g., the hybridized 3d-4s-4p valence band spans a 9-dimensional space (18 including spin). In many cases the on-site energy blocks ε_{i} in Eq. (2) are themselves diagonal, but this is not necessary. The hopping integrals γ^{ij} are strictly site-off-diagonal.

The resolvent (or static Green-function) matrix of a given system described by the Hamiltonian H can be defined as

$$G(z) := (z - H)^{-1}$$

(3)

for any $z \in \mathbb{C}$ (at least where the inversion can be performed). Supposing that the solutions of the eigenvalue equation,

$$H |i\rangle = \varepsilon_{i} |i\rangle,$$

(4)

are known, then the Hamiltonian matrix can be written as

$$H = \sum_{i} \varepsilon_{i} |i\rangle \langle i|,$$

(5)

where i runs over all eigenfunctions. This implies the spectral decomposition of the matrix $G(z)$,

$$G(z) = \sum_{i} \frac{1}{z - \varepsilon_{i}} |i\rangle \langle i|.$$

(6)

The fundamental analytic property of the resolvent,

$$G(z^*) = G(z)^{j}$$

(7)
is a corollary of this decomposition. Another fundamental identity can be derived from definition:

$$\frac{dG(z)}{dz} = -G(z)^2.$$ \hspace{1cm} (8)

Since $G(z)$ is undefined at real energies, ε_i, we have to approach the real arguments from the imaginary direction,

$$G^\pm(\varepsilon) := \lim_{\delta \rightarrow 0} G(\varepsilon \pm i\delta)$$ \hspace{1cm} (9)

$$= \sum_i \frac{1}{\varepsilon - \varepsilon_i \pm i0} |i\rangle \langle i|,$$ \hspace{1cm} (10)

for any $\varepsilon \in \mathbb{R}$. Note that $G^+(\varepsilon) \neq G^-(\varepsilon)$ if ε is in the spectrum of H. Equation (7) implies

$$[G^+(\varepsilon)]^\dagger = G^-(\varepsilon).$$ \hspace{1cm} (11)

The well-known identity of generalized functions,

$$\frac{1}{\varepsilon - \varepsilon_i \pm i0} = \mathcal{P} \left(\frac{1}{\varepsilon - \varepsilon_i} \right) \mp i\pi\delta(\varepsilon - \varepsilon_i),$$ \hspace{1cm} (12)

leads to the relationship,

$$\sum_i \delta(\varepsilon - \varepsilon_i) |i\rangle \langle i| = -\frac{1}{2\pi i} \left[G^+(\varepsilon) - G^-(\varepsilon) \right]$$

$$= -\frac{1}{2\pi i} \left[G^+(\varepsilon) - (G^+(\varepsilon))^\dagger \right].$$ \hspace{1cm} (13)

By composing the trace of (13), the density of states of the system, $n(\varepsilon)$, can be expressed from the Green function as

$$n(\varepsilon) = \sum_i \delta(\varepsilon - \varepsilon_i) = -\frac{1}{2\pi i} \text{Tr} \left[G^+(\varepsilon) - (G^+(\varepsilon))^\dagger \right]$$

$$= -\frac{1}{2\pi i} \left[\text{Tr} G^+(\varepsilon) - (\text{Tr} G^+(\varepsilon))^\dagger \right]$$

$$= -\frac{1}{\pi} \text{Im} \text{Tr} G^+(\varepsilon) = \frac{1}{\pi} \text{Im} \text{Tr} G^-(\varepsilon).$$ \hspace{1cm} (14)

The expectation value of an observable A at zero temperature can be calculated as

$$\langle A \rangle = \int_{\varepsilon_b}^{\varepsilon_F} \sum_i \delta(\varepsilon - \varepsilon_i) \langle i| A |i\rangle \, d\varepsilon$$

$$= \int_{\varepsilon_b}^{\varepsilon_F} \text{Tr} \left(\sum_i \delta(\varepsilon - \varepsilon_i) |i\rangle \langle i| A \right) \, d\varepsilon$$

$$\langle A \rangle = -\frac{1}{\pi} \text{Im} \int_{\varepsilon_b}^{\varepsilon_F} \text{Tr} \left[A G^+(\varepsilon) \right] \, d\varepsilon,$$ \hspace{1cm} (15)

so $G(z)$ and the spectrum of H contain the same information.
2 Perturbations with respect to a reference system

Suppose now that $H = H_0 + \Delta H$, and $G_0 = (z - H_0)^{-1}$ is the resolvent of the reference system. Then

$$G(z) = (z - H)^{-1}$$

$$\left(z - H_0 - \Delta H\right) G(z) = I$$

$$\left(I - G_0(z) \Delta H\right) G(z) = G_0(z)$$

$$G(z) = \left(I - G_0(z) \Delta H\right)^{-1} G_0(z) = G_0(z) \left(I - \Delta H G_0(z)\right)^{-1}$$

On the other hand, from Eq. (19),

$$G(z) = G_0(z) + G_0(z) \Delta H G(z) .$$

This equation can be solved iteratively:

$$G_0^{(0)}(z) = G_0(z)$$

$$G_0^{(1)}(z) = G_0(z) + G_0(z) \Delta H G_0(z)$$

$$G_0^{(2)}(z) = G_0(z) + G_0(z) \Delta H G_0(z) + G_0(z) \Delta H G_0(z) \Delta H G_0(z)$$

$$\vdots$$

$$G(z) = G_0(z) + G_0(z) \Delta H G_0(z) + G_0(z) \Delta H G_0(z) \Delta H G_0(z) + \ldots$$

This Dyson-equation can be rearranged as

$$G(z) = G_0(z) + G_0(z) \Delta H G_0(z) \Delta H + \ldots \right] G_0(z)$$

$$= G_0(z) + G_0(z) T(z) G_0(z) ,$$

where $T(z)$ is the so-called scattering matrix,

$$T(z) = \Delta H + \Delta H G_0(z) \Delta H$$

$$= \Delta H + \Delta H G_0(z) \Delta H + \Delta H G_0(z) \Delta H G_0(z) \Delta H + \ldots$$

$$= \Delta H + \Delta H G_0(z) T(z) .$$

This can be rearranged to give

$$T(z) = \left(I - \Delta H G_0(z)\right)^{-1} \Delta H = \Delta H \left[I - G_0(z) \Delta H\right]^{-1} .$$

It can easily be shown that the T matrix has similar analytical properties as the resolvent,

$$T(z^*) = T(z)$$

$$\frac{d}{dz} T(z) = T(z) \frac{d G_0(z)}{dz} T(z) ,$$

$$T^\pm(z) := \lim_{\delta \to 0} T(z \pm i \delta) .$$
at real energies \(\varepsilon \). By using equations (14) and (23), we get the density of states (DOS) of the perturbed system with respect to the reference system,

\[
n(\varepsilon) = n_0(\varepsilon) - \frac{1}{\pi} \text{ImTr} \left[G_0^+(\varepsilon) T^+(\varepsilon) G_0^+(\varepsilon) \right].
\]

Using properties (8) and (27), then integrating with respect to energy, we arrive at the Lloyd-formula, which gives the integrated DOS of the perturbed system,

\[
N(\varepsilon) := \int_{-\infty}^{\varepsilon} n(\varepsilon') \, d\varepsilon' = N_0(\varepsilon) + \frac{1}{\pi} \text{ImTr} \ln T^+(\varepsilon).
\]

3 On-site impurities

Case of a single on-site impurity: \(\Delta H_{ii} = \{ \Delta H_{ii} \delta_{in}\delta_{im} \} \),

\[
T = \Delta H_{ii} + \Delta H_{ii} G_0 \Delta H_{ii} + \ldots
\]

\[
= \{ [\Delta H_{ii} + \Delta H_{ii} G_0^{ii} \Delta H_{ii} + \ldots] \delta_{in}\delta_{im} \}
\]

\[
= \{ t_i \delta_{in}\delta_{im} \}, \text{ thus}
\]

\[
t_i = \Delta H_{ii} + \Delta H_{ii} G_0^{ii} t_i.
\]

Now let \(\Delta H \) be a sum of such on-site differences: \(\Delta H = \sum_i \Delta H_{ii} \). Then

\[
T = \left(\sum_i \Delta H_{ii} \right) + \left(\sum_i \Delta H_{ii} \right) G_0 \left(\sum_i \Delta H_{ii} \right) + \ldots
\]

\[
= \sum_i \Delta H_{ii} + \sum_{i,j} \Delta H_{ii} G_0 \Delta H_{jj} + \sum_{i,j,k} \Delta H_{ii} G_0 \Delta H_{jj} G_0 \Delta H_{kk} + \ldots
\]

\[
T_{nm} = \Delta H_{n} \delta_{nm} + \Delta H_{n} G_0^{nm} \Delta H_{nm} + \sum_{k} \Delta H_{n} G_0^{nk} \Delta H_k G_0^{km} \Delta H_m + \ldots
\]

Both in operator and in matrix sense,

\[
T = \sum_i \Delta H_{ii} + \sum_{i,j} \Delta H_{ii} G_0 \Delta H_{jj} + \ldots
\]

\[
= \sum_i \left(\Delta H_{ii} + \sum_j \Delta H_{ii} G_0 \Delta H_{jj} + \ldots \right)
\]

\[
= \sum_i Q_i, \text{ where}
\]
\[Q_n := \Delta H_n + \sum_m \Delta H_n G_0 \Delta H_m + \ldots \] (37)
\[= \Delta H_n + \Delta H_n G_0 \sum_m \Delta Q_m \]
\[= \Delta H_n + \Delta H_n G_0 Q_n + \Delta H_n G_0 \sum_{m(\neq n)} \Delta Q_m \]
\[
\left(I - \Delta H_n G_0 \right) Q_n = \Delta H_n + \Delta H_n G_0 \sum_{m(\neq n)} \Delta Q_m
\]
\[Q_n = t_n + t_n G_0 \sum_{m(\neq n)} Q_m. \] (38)

where \(t_n \) is formally a single impurity \(T \)-matrix on the \(n \)-th site,

\[t_n = \{ t_n \delta_{mn} \}. \] (39)

Solving equation (38) iteratively,

\[Q_n^{(0)} := t_n \] (40)
\[Q_n^{(1)} = t_n + \sum_{m(\neq n)} t_n G_0 t_m \]
\[Q_n^{(2)} = t_n + \sum_{m(\neq n)} t_n G_0 t_m + \sum_{m(\neq n) k(\neq m)} t_n G_0 t_m G_0 t_k + \ldots \] (41)

Using equation (37), we arrive at the multiple scattering expansion of the \(T \) matrix,

\[T = \sum_n t_n + \sum_{n \neq m} t_n G_0 t_m + \sum_{n \neq m \neq k} t_n G_0 t_m G_0 t_k + \ldots \] (42)

Since all \(t_n \) have the structure of \(\Delta H_n \),

\[T^{nm} = t_n \delta_{nm} + (1 - \delta_{nm}) t_n G_0^{nm} t_m + \sum_{k(k \neq m)} t_n G_0^{nk} G_0^{km} t_m + \ldots \] (43)
\[= t_n \delta_{nm} + \sum_k t_n G_0^{nk} (1 - \delta_{nk}) T^{km}. \] (44)

Defining the site-off-diagonal part of the reference system’s resolvent,

\[\hat{G}_0 := \{ G_0^{nk} (1 - \delta_{nk}) \}; \] (45)
\[T = t + t \hat{G}_0 T \]
\[
\downarrow
\quad T = \left[t^{-1} + \hat{G}_0 \right]^{-1}
\] (46)
On the other hand,

\[T = t + t \tilde{G} + t \tilde{G} t \tilde{G} t \tilde{G} \ldots, \]

so

\[G = G_0 + G_0 T G_0 \]

is given in terms of \(G_0 \) and \(t \).

4 Chemically disordered systems

4.1 Binary alloys

Let’s consider now a two-state disordered system, e.g. a two-component (binary) random alloy:

\[\Delta H_i = \xi_i \Delta H_i^A + (1 - \xi_i) \Delta H_i^B, \]

where \(\xi_i \) are independent random variables with Bernoulli distribution:

\[\xi_i = \begin{cases} 1 & \text{with probability } P_i(1) := c_i, \\ 0 & \text{with probability } P_i(0) = 1 - c_i. \end{cases} \]

By definition the expected values are

\[\mathbb{E} \xi_i \equiv \langle \xi_i \rangle = c_i, \]

thus the expected value of \(\Delta H_i \) is

\[\langle \Delta H_i \rangle = \langle \xi_i \rangle \Delta H_i^A + (1 - \xi_i) \Delta H_i^B = c_i \Delta H_i^A + (1 - c_i) \Delta H_i^B. \]

Independence means that the joint probability mass function of \(\{ \xi \} \) decomposes to the product of the individual probability mass functions:

\[P (\{ \xi \}) = \prod_{i=1}^{N} P_i (\xi_i). \]

Of course \(P (\{ \xi \}) \) is a probability, since trivially

\[\sum_{\{ \xi \}} P (\{ \xi \}) = \prod_{i=1}^{N} \left(\sum_{\xi_i=0}^{1} P_i (\xi_i) \right) = 1. \]

The configurational average of some physical quantity is then defined as

\[\langle F (\{ \xi \}) \rangle := \sum_{\{ \xi \}} P (\{ \xi \}) F (\{ \xi \}) = \sum_{\xi_1} \ldots \sum_{\xi_N} P_1 (\xi_1) \ldots P_N (\xi_N) F (\xi_1, \ldots, \xi_N). \]

Since \(G = G (\{ \xi_1, \xi_2, \ldots, \xi_N \}) \equiv G (\{ \xi \}) \), the mean of a physical quantity \(A \) in the TB picture is

\[\langle A \rangle = \left\langle -\frac{1}{\pi} \operatorname{Im} \int f(\varepsilon) \operatorname{Tr} [A G (\{ \xi \})] \, d\varepsilon \right\rangle \]

\[= -\frac{1}{\pi} \operatorname{Im} \int f(\varepsilon) \operatorname{Tr} [A G] \, d\varepsilon \]

(where we suppressed the dependence of \(G \) on the energy \(\varepsilon \)).
4.2 Coherent Potential Approximation

\[\langle G \rangle = G_0 + G_0 \langle T \rangle G_0 \]

\[=: G_c = (z - H_c)^{-1}, \quad (57) \]

where we defined the effective Hamiltonian \(H_c \), often noted as \(\Sigma_c \), the self-energy. This assumption is the coherent potential approximation (CPA). The (57) CPA condition can only be satisfied if \(H_c = H_c(z) \) is a function of the energy, but it is (by definition) configuration-independent.

Let us now choose our reference system to be \(H_c \),

\[T = t + \xi \hat{G} t + \xi \hat{G} t + \ldots \]

\[\Delta H = H - H_c = \{ (H_i - H_{ci}) \delta_m \delta_{im} \} , \quad (59) \]

where \(H_{c,i} \) are to be determined. A condition is given by

\[\langle G \rangle = G_c = G_c + G_c \langle T \rangle G_c \]

\[\Downarrow \]

\[\langle T \rangle = 0 \quad (61) \]

\[\langle t \rangle + \langle t \hat{G} t \rangle + \ldots = 0. \]

Single-site CPA:

\[\langle t \rangle := 0 \quad (63) \]

Considering this,

\[\langle t_n \hat{G}^m t_m \rangle = \langle t_n \rangle \hat{G}^m \langle t_m \rangle = 0 \]

\[\sum_{k \neq n} \langle t_n \hat{G}^k t_k \hat{G}^m t_m \rangle = \sum_{k \neq n} \langle t_n \hat{G}^k \langle t_k \rangle \hat{G}^m t_m \rangle = 0. \]

Thus eq. (63) satisfies the condition set by eq. (61) up to fourth order in \(t \). Since

\[t_i = \xi_i t_A + (1 - \xi_i) t_B \]

eq. (63) reads as

\[\langle t_i \rangle = c_t t_A + (1 - c_t) t_B = 0 \]

This is in fact a system of equations for \(H_c \), because

\[t_i = (I - \Delta H_i \hat{G}_i^c) \Delta H_i^c, \quad (66) \]

\[\Delta H_i^c = H_i^c - H_{c,i} \quad (\alpha = A, B) \]

and \(G_i^c \) can be determined from equation (57).