1 Time reversal

1.1 Without spin

Time-dependent Schrödinger equation:

$$
\begin{equation*}
i \hbar \partial_{t} \psi(\mathbf{r}, t)=\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})\right] \psi(\mathbf{r}, t) \tag{1}
\end{equation*}
$$

'Local' time-reversal transformation, T :

$$
\begin{gather*}
t_{1}<t_{2}<\ldots<t_{n} \Rightarrow T t_{1}>T t_{2}>\ldots>T t_{n} \tag{2}\\
T\left(t_{2}-t_{1}\right)=-\left(t_{2}-t_{1}\right) \tag{3}\\
T=T^{-1} \tag{4}
\end{gather*}
$$

Transformed Schrödinger equation

$$
\begin{align*}
& \frac{d(f \circ T)(t)}{d t}= \frac{f(T t+T d t)-f(T t)}{d t}=\frac{f(T t-d t)-f(T t)}{d t}=-\frac{d f(T t)}{d t} \tag{5}\\
& \Downarrow \\
&-i \hbar \partial_{t} \psi^{\prime}(\mathbf{r}, T t)=\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})\right] \psi^{\prime}(\mathbf{r}, T t) \tag{6}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
&-i \hbar \partial_{t} \psi^{*}(\mathbf{r}, t)= {\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})\right] \psi^{*}(\mathbf{r}, t) } \tag{7}\\
& \Downarrow \\
& \psi^{\prime}(\mathbf{r}, T t)=\psi^{*}(\mathbf{r}, t)=C \psi(\mathbf{r}, t) \tag{8}
\end{align*}
$$

Properties:

$$
\begin{equation*}
C^{2}=1, C^{-1}=C \tag{9}
\end{equation*}
$$

C is anti-hermitian,

$$
\begin{equation*}
\langle\psi \mid C \varphi\rangle=\langle\varphi \mid C \psi\rangle=\langle C \psi \mid \varphi\rangle^{*} \tag{10}
\end{equation*}
$$

and anti-linear,

$$
\begin{equation*}
C\left(c_{1} \varphi_{1}+c_{2} \varphi_{2}\right)=c_{1}^{*} C \varphi_{1}+c_{2}^{*} C \varphi_{2} \tag{11}
\end{equation*}
$$

However, the transformation C preserves the norm of the wavefunctions,

$$
\begin{equation*}
\langle C \psi \mid C \psi\rangle=\langle\psi \mid \psi\rangle . \tag{12}
\end{equation*}
$$

Relationship to operators:

$$
\begin{gather*}
C(\mathbf{r} \psi)=\mathbf{r}(C \psi) \Longrightarrow C \mathbf{r}=\mathbf{r} C \tag{13}\\
C(\mathbf{p} \psi)=C\left(\frac{\hbar}{i} \nabla \psi\right)=-\frac{\hbar}{i} \nabla C \psi=-\mathbf{p}(C \psi) \Longrightarrow C \mathbf{p}=-\mathbf{p} C \tag{14}\\
C \mathbf{L}=C(\mathbf{r} \times \mathbf{p})=\mathbf{r} C \times \mathbf{p}=-(\mathbf{r} \times \mathbf{p}) C=-\mathbf{L} C \tag{15}
\end{gather*}
$$

1.2 With spin

Hamilton operator

$$
\begin{equation*}
H=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{r})+\frac{\mu_{B}}{\hbar}(\mathbf{L}+2 \mathbf{S}) \mathbf{B} \tag{16}
\end{equation*}
$$

Pauli-Schrödinger equation

$$
\begin{equation*}
i \hbar \partial_{t} \psi(\mathbf{r}, t)=\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})+\frac{\mu_{B}}{\hbar}(\mathbf{L}+2 \mathbf{S}) \mathbf{B}\right] \psi(\mathbf{r}, t) \tag{17}
\end{equation*}
$$

Time-reversed magnetic field: $\mathbf{B}^{\prime}=-\mathbf{B}$
Time-reversed Pauli-Schrödinger equation

$$
\begin{align*}
-i \hbar \partial_{t} \psi^{\prime}(\mathbf{r}, T t) & =\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})+\frac{\mu_{B}}{\hbar}(\mathbf{L}+2 \mathbf{S}) \mathbf{B}^{\prime}\right] \psi^{\prime}(\mathbf{r}, T t) \tag{18}\\
& =\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})-\frac{\mu_{B}}{\hbar}(\mathbf{L}+2 \mathbf{S}) \mathbf{B}\right] \psi^{\prime}(\mathbf{r}, T t) \tag{19}
\end{align*}
$$

On the other hand:

$$
\begin{align*}
-i \hbar \partial_{t} \psi^{*}(\mathbf{r}, t) & =\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})+\frac{\mu_{B}}{\hbar}\left(\mathbf{L}^{*}+2 \mathbf{S}^{*}\right) \mathbf{B}\right] \psi^{*}(\mathbf{r}, t) \tag{20}\\
& =\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})-\frac{\mu_{B}}{\hbar}\left(\mathbf{L}-2 \mathbf{S}^{*}\right) \mathbf{B}\right] \psi^{*}(\mathbf{r}, t) \tag{21}
\end{align*}
$$

It is then tempting to suppose that

$$
\begin{gather*}
\psi^{\prime}(\mathbf{r}, T t)=\mathcal{L} \psi^{*}(\mathbf{r}, t)=\mathcal{L} C \psi(\mathbf{r}, t) \tag{22}\\
\Downarrow \\
-i \hbar \mathcal{L} \partial_{t} \psi^{*}(\mathbf{r}, t)=\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})-\frac{\mu_{B}}{\hbar}(\mathbf{L}+2 \mathbf{S}) \mathbf{B}\right] \mathcal{L} \psi^{*}(\mathbf{r}, t) \tag{23}\\
\Downarrow \\
-i \hbar \partial_{t} \psi^{*}(\mathbf{r}, t)=\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})-\frac{\mu_{B}}{\hbar}\left(\mathbf{L}+2 \mathcal{L}^{-1} \mathbf{S} \mathcal{L}\right) \mathbf{B}\right] \psi^{*}(\mathbf{r}, t) \tag{24}
\end{gather*}
$$

This equation is obviously satisfied if

$$
\begin{equation*}
\mathcal{L}^{-1} \mathbf{S} \mathcal{L}=-\mathbf{S}^{*}=-C \mathbf{S} C \Longrightarrow \mathbf{S} \mathcal{L} C=-\mathcal{L} C \mathbf{S} \tag{25}
\end{equation*}
$$

Let's introduce the simplified notation: $T:=\mathcal{L} C$

$$
\begin{equation*}
T \mathbf{S}=-\mathbf{S} T \tag{26}
\end{equation*}
$$

It is easy to prove that

$$
\begin{equation*}
\underline{T=\sigma_{y} C} \tag{27}
\end{equation*}
$$

is a satisfactory choice (in many text-books $T=i \sigma_{y} C$ is chosen).
Proof of Eq. (26):

$$
\sigma_{x}^{*}=\left(\begin{array}{cc}
0 & 1 \tag{28}\\
1 & 0
\end{array}\right)=\sigma_{x} \quad \sigma_{y}^{*}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)=-\sigma_{y} \quad \sigma_{z}^{*}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\sigma_{z}
$$

$$
\begin{align*}
& T^{-1} \sigma_{x} T=\left(-\sigma_{y} C\right) \sigma_{x}\left(\sigma_{y} C\right)=\sigma_{y} \sigma_{x} \sigma_{y}=-\sigma_{x} \tag{29}\\
& T^{-1} \sigma_{y} T=\left(-\sigma_{y} C\right) \sigma_{y}\left(\sigma_{y} C\right)=-\sigma_{y} \tag{30}\\
& T^{-1} \sigma_{z} T=\left(-\sigma_{y} C\right) \sigma_{z}\left(\sigma_{y} C\right)=\sigma_{y} \sigma_{z} \sigma_{y}=-\sigma_{z} \tag{31}
\end{align*}
$$

Properties:

$$
\begin{gather*}
T^{-1}=C \sigma_{y}=\sigma_{y}^{*} C=-\sigma_{y} C=-T \tag{32}\\
\Downarrow \tag{33}\\
T^{2}=-1 \tag{34}
\end{gather*}
$$

From the relationship,

$$
\begin{align*}
\langle\psi \mid T \varphi\rangle & =\left\langle\psi \mid \sigma_{y} C \varphi\right\rangle=\left\langle\sigma_{y} \psi \mid C \varphi\right\rangle=\left(\sigma_{y}^{r s}\right)^{*}\left\langle\psi_{s} \mid C \varphi_{r}\right\rangle=\left\langle\varphi_{r} \mid C \sigma_{y}^{r s} \psi_{s}\right\rangle \\
& =\left\langle\varphi \mid C \sigma_{y} \psi\right\rangle=-\langle\varphi \mid T \psi\rangle \tag{35}
\end{align*}
$$

it follows that

$$
\begin{equation*}
\langle\psi \mid T \psi\rangle=-\langle\psi \mid T \psi\rangle=0, \tag{36}
\end{equation*}
$$

i.e. ψ and $T \psi$ are orthogonal and, also, T is norm-conserving,

$$
\begin{equation*}
\langle T \psi \mid T \psi\rangle=-\left\langle\psi \mid T^{2} \psi\right\rangle=\langle\psi \mid \psi\rangle \tag{37}
\end{equation*}
$$

The operator of spin-orbit coupling, $\frac{\hbar}{4 m^{2} c^{2}}(\nabla V \times \mathbf{p}) \sigma$, commutes with T :

$$
\begin{equation*}
T^{-1}(\nabla V \times \mathbf{p}) \sigma T=\left(T^{-1}(\nabla V \times \mathbf{p}) T\right)\left(T^{-1} \sigma T\right)=(\nabla V \times(-\mathbf{p}))(-\sigma)=(\nabla V \times \mathbf{p}) \sigma \tag{38}
\end{equation*}
$$

1.3 Kramers degeneracy

Let us consider an eigenfunction, $\psi\left(\mathbf{r}_{1} s_{1}, \ldots, \mathbf{r}_{N} s_{N}\right)$ of the N-electron Hamiltonian,

$$
\begin{equation*}
H \psi=E \psi \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{-1} H T=H \tag{40}
\end{equation*}
$$

The time-reversed wavefunction, $T \psi$, is then also eigenfunction of H with the same eigenvalue,

$$
\begin{equation*}
T^{-1} H T \psi=E \psi \Longrightarrow H(T \psi)=E(T \psi) \tag{41}
\end{equation*}
$$

The representation of T is

$$
\begin{gather*}
T=\sigma_{y}^{(1)} \ldots \sigma_{y}^{(N)} C=(-1)^{N} C \sigma_{y}^{(1)} \ldots \sigma_{y}^{(N)}=(-1)^{N} T^{-1} \Longrightarrow T^{2}=(-1)^{N} \tag{42}\\
T^{+}=T^{-1}=(-1)^{N} T \tag{43}
\end{gather*}
$$

since for any $k=1, \ldots, N$

$$
\begin{equation*}
T \mathbf{S}^{(k)}=-\mathbf{S}^{(k)} T \tag{44}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
\langle\psi \mid T \psi\rangle & =\left\langle\psi \mid \sigma_{y}^{(1)} \ldots \sigma_{y}^{(N)} C \psi\right\rangle=(-1)^{N}\left\langle\psi \mid C \sigma_{y}^{(1)} \ldots \sigma_{y}^{(N)} \psi\right\rangle \underset{\text { Eq. }(10)}{=}(-1)^{N}\left\langle\sigma_{y}^{(1)} \ldots \sigma_{y}^{(N)} \psi \mid C \psi\right\rangle \\
& =(-1)^{N}\left\langle\psi \mid \sigma_{y}^{1} \ldots \sigma_{y}^{N} C \psi\right\rangle=(-1)^{N}\langle\psi \mid T \psi\rangle \tag{45}
\end{align*}
$$

Corollary: For odd number of electrons ψ and $T \psi$ are orthogonal, therefore, the eigenstates of the system are at least two-fold degenerate.

1.4 Kramers degeneracy of Bloch-states

We consider the Hamiltonian derived from the Dirac equation up to first order of $1 / c^{2}$:

$$
\begin{equation*}
H=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{r})-\frac{\mathbf{p}^{4}}{8 m^{3} c^{2}}+\frac{\hbar^{2}}{8 m^{2} c^{2}} \Delta V(\mathbf{r})+\frac{\hbar}{4 m^{2} c^{2}}(\nabla V \times \mathbf{p}) \sigma \tag{46}
\end{equation*}
$$

This one-electron Hamiltonian is invariant w.r.t. time-reversal,

$$
\begin{equation*}
T^{-1} H T=H \tag{47}
\end{equation*}
$$

From the previous section it follows that the eigenstates are at least two-fold degenerate:

$$
\begin{align*}
H \psi & =\varepsilon \psi \tag{48}\\
H(T \psi) & =\varepsilon(T \psi) \tag{49}
\end{align*}
$$

and $T \psi$ is orthogonal to ψ.
What is $T \psi$? A Bloch-eigenfunction is defined as

$$
\begin{gather*}
\psi_{\mathbf{k}}(\mathbf{r})=e^{i \mathbf{k r}} u_{\mathbf{k}}(\mathbf{r}) \tag{50}\\
H_{\mathbf{k}}=\frac{(\mathbf{p}+\hbar \mathbf{k})^{2}}{2 m}+V(\mathbf{r})-\frac{(\mathbf{p}+\hbar \mathbf{k})^{4}}{8 m^{3} c^{2}}+\frac{\hbar^{2}}{8 m^{2} c^{2}} \Delta V(\mathbf{r})+\frac{\hbar}{4 m^{2} c^{2}}(\nabla V \times(\mathbf{p}+\hbar \mathbf{k})) \sigma \tag{51}\\
H_{\mathbf{k}} u_{\mathbf{k}}=\varepsilon_{\mathbf{k}} u_{\mathbf{k}} \tag{52}
\end{gather*}
$$

It is straightforward to show that

$$
\begin{equation*}
T^{-1} H_{\mathbf{k}} T=H_{-\mathbf{k}} \tag{53}
\end{equation*}
$$

thus,

$$
\begin{gather*}
T^{-1} H_{\mathbf{k}} u_{\mathbf{k}}=\varepsilon_{\mathbf{k}} T^{-1} u_{\mathbf{k}} \tag{54}\\
\Downarrow \\
H_{-\mathbf{k}}\left(T^{-1} u_{\mathbf{k}}\right)=\varepsilon_{\mathbf{k}}\left(T^{-1} u_{\mathbf{k}}\right) \tag{55}\\
\Downarrow \\
\varepsilon_{-\mathbf{k}}=\varepsilon_{\mathbf{k}} \tag{56}
\end{gather*}
$$

and the two degenerate wavefunctions are:

$$
\begin{equation*}
\psi_{\mathbf{k}}(\mathbf{r})=e^{i \mathbf{k r}}\binom{u_{\mathbf{k} \uparrow}(\mathbf{r})}{u_{\mathbf{k} \downarrow}(\mathbf{r})} \quad \text { and } \quad \psi_{-\mathbf{k}}^{(1)}(\mathbf{r})=e^{-i \mathbf{k r}}\binom{i u_{\mathbf{k} \downarrow}^{*}(\mathbf{r})}{-i u_{\mathbf{k} \uparrow}^{*}(\mathbf{r})} \tag{57}
\end{equation*}
$$

1.5 Space inversion

Let's consider the case when also space inversion applies:

$$
\begin{gather*}
V(I \mathbf{r})=V(-\mathbf{r})=V(\mathbf{r}) \tag{58}\\
\Downarrow \\
I H_{-\mathbf{k}} I=H_{\mathbf{k}} \tag{59}
\end{gather*}
$$

This also implies that $\varepsilon_{-\mathbf{k}}=\varepsilon_{\mathbf{k}}$ with the corresponding wavefunction for $-\mathbf{k}$,

$$
\begin{equation*}
\psi_{-\mathbf{k}}^{(2)}(\mathbf{r})=e^{-i \mathbf{k r}}\binom{u_{\mathbf{k} \uparrow}(-\mathbf{r})}{u_{\mathbf{k} \downarrow}(-\mathbf{r})} . \tag{60}
\end{equation*}
$$

In case of both time-reversal and inversion symmetry, the two eigenfunctions for $-\mathbf{k}$ with the same energy $\varepsilon_{-\mathbf{k}}\left(=\varepsilon_{\mathbf{k}}\right)$ are orthogonal:

$$
\begin{equation*}
\int \psi_{-\mathbf{k}}^{(1)+}(\mathbf{r}) \psi_{-\mathbf{k}}^{(2)}(\mathbf{r}) d^{3} r=-i \int\left[u_{\mathbf{k} \downarrow}(\mathbf{r}) u_{\mathbf{k} \uparrow}(-\mathbf{r})-u_{\mathbf{k} \uparrow}(\mathbf{r}) u_{\mathbf{k} \downarrow}(-\mathbf{r})\right] d^{3} r=0 \tag{61}
\end{equation*}
$$

Corollary: The Bloch-states of a nonmagnetic centro-symmetric crystal are at least twofold degenerate.

1.6 Sorting out by spin-expectation value

In general, the eigenfunctions $\psi_{\mathbf{k}}^{(\mu)}(\mu=1,2)$ are not eigenfunctions of the spin-operator S_{z} for any prechosen quantization axis z. This is only the case in the absence of spin-orbit coupling. Nevertheless, it is possible to construct the orthonormal linear combinations,

$$
\begin{align*}
\psi_{\mathbf{k}}^{(+)} & =c_{1} \psi_{\mathbf{k}}^{(1)}+c_{2} \psi_{\mathbf{k}}^{(2)} \tag{62}\\
\psi_{\mathbf{k}}^{(-)} & =-c_{2}^{*} \psi_{\mathbf{k}}^{(1)}+c_{1}^{*} \psi_{\mathbf{k}}^{(2)} \tag{63}
\end{align*}
$$

$c_{1}, c_{2} \in \mathbb{C},\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1$, such that

$$
\begin{equation*}
\left\langle\psi_{\mathbf{k}}^{(+/-)}\right| \sigma_{x}\left|\psi_{\mathbf{k}}^{(+/-)}\right\rangle=\left\langle\psi_{\mathbf{k}}^{(+/-)}\right| \sigma_{y}\left|\psi_{\mathbf{k}}^{(+/-)}\right\rangle=0 \tag{64}
\end{equation*}
$$

and

$$
\begin{gather*}
\left\langle\psi_{\mathbf{k}}^{(+/-)}\right| \sigma_{z}\left|\psi_{\mathbf{k}}^{(+/-)}\right\rangle= \pm P_{\mathbf{k}} \tag{65}\\
0 \leq P_{\mathbf{k}} \leq 0 \tag{66}
\end{gather*}
$$

Thus we can sort out the two degenerate states by the 'spin-character', $P_{\mathbf{k}}$.

FIG. 2: Band structure of Pt from the fully relativistic (red) and the relativistic with the spin-orbit coupling scaled to zero (black) calculation.

FIG. 3: Calculated fully relativistic band structure of bcc Fe. The small inset shows a comparison to the calculation with the spin-orbit coupling scaled to zero $(x=0)$. The spin-orbit interaction leads to avoided crossings.

FIG. 4: Calculated relativistic Fermi surface of Cu (upper left), Au (upper right) and Pt (lower left: 9th band, lower right: 11th band), and the expectation values of $\hat{\beta} \sigma_{z}$ for the $\left|\Psi_{k}^{+}\right\rangle$states are indicated as color code. Note the different scale for Cu and Au in comparison to Pt .

FIG. 5: Calculated relativistic Fermi surface for the bands $7-10$ of bcc Fe. The expectation values of the $\hat{\beta} \sigma_{z}$ operator are given as color code.

