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In several experiments, the magnitude of the contribution of magnetic impurities to the Kondo resistivity
shows size dependence in mesoscopic samples. It was suggested ten years ago that magnetic surface anisotropy
can be responsible for the size dependence in cases where there is strong spin-orbit interaction in the metallic
host. The anisotropy energy has the form �E=Kd�nS�2, where n is the vector perpendicular to the plane
surface, S is the spin of the magnetic impurity, and Kd�0 is inversely proportional to distance d measured
from the surface. It has been realized that in the tedious calculation, an unjustified approximation was applied
for the hybridizations of the host atom orbitals with the conduction electrons, which depend on the position of
the host atoms. That is, the momenta of the electrons were replaced by the Fermi momentum kF. That is
reinvestigated by considering the k-dependence, which leads to singular energy integrals. Contrary to the
previous result, Kd is oscillating like sin�2kFd� and the distance dependence is similar to 1/d3 in the asymptotic
region. As the anisotropy is oscillating, for integer spin the ground state is either a singlet or a doublet
depending on distance d, but in the case of the doublet there is no direct electron induced transition between
those two states at zero temperature. Furthermore, for half-integer �S�1/2� spin it is always a doublet with
direct transition only in half of the cases.
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I. INTRODUCTION

There is substantial experimental evidence that the ampli-
tude of the Kondo effect due to magnetic impurities in me-
tallic samples of limited size is reduced1,2 but with un-
changed Kondo temperature. This indicates that not all of the
impurities contribute in the same way. There were early
speculations that this reduction appears when the sample size
is comparable to the Kondo screening cloud. This is incorrect
as the Kondo coupling is local and the only relevant energy
scale to be compared with the Kondo temperature is the level
spacing of the conduction electrons which is, e.g., zero for
semi-infinite samples. Later, it was suggested3 that a mag-
netic surface anisotropy can develop due to the spin-orbit
interaction in the host metal, which has the form

H = Kd�Sz�2, �1�

where the constant Kd depends on the distance measured
from the surface of the sample and Sz is the component of the
impurity spin perpendicular to the surface �see Fig. 1�. In
those papers2–4 it was stated that, surprisingly, Kd for large
distances is always positive and decays with the first power
of the distance. That result was not questioned in Ref. 5.
Recently, one of the authors �Szunyogh� has called attention
to an unjustified approximation in the previous lengthy cal-
culation, which can be responsible for the very surprising
results. That approximation was that in the hybridizations of
the host atom orbitals with the conduction electrons which
depend on the position of the host atoms �see Eqs. �3� and �9�
of Ref. 4�, the momenta of the electrons were replaced by the
Fermi momentum kF. That is not the case in the derivation of
the Friedel oscillation.6

Meanwhile, great effort has been made to derive the sur-
face anisotropy by using electronic structure calculations.
First, Szunyogh and Gyorffy calculated the anisotropy in
semi-infinite Au host for Fe impurities.7 They found that Kd
is an oscillating function of the distance d and the amplitude
falls as 1 /d2. That was a calculation of mean-field type and
the discrepancy between those and the analytical ones was
not surprising since, in the latter, the diagrams calculated are
beyond the mean-field approximation. Recently, Szunyogh,
et al.8 have developed another model, where the spin-orbit
interaction was placed on the d-level of the impurity instead
of the host. They considered the Friedel oscillation in the
density of states near the Fermi energy as due to the presence
of the surface and the different d-orbitals of the impurity
coupled differently to these oscillations, and that is realized
in the oscillating anisotropy decaying as 1/d2. It is interest-
ing to note that the Hartree-Fock mean-field approximation
and the diagram beyond that play equal roles. We are also
informed that very elaborate calculations by Szilva et al.9 are
in progress, where the spin-orbit interaction in the host is
considered.

The relative importance of the spin-orbit interactions on
the d-level and the host material must be very specific for
which impurity atom and host metal are considered, and the

FIG. 1. The magnetic impurity at a distance d from the surface
in a metallic host with homogeneously dispersed spin-orbit scatter-
ers labeled by n.
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final answer can be given only by detailed electronic struc-
ture calculations.

The present analytical calculation is focused on the oscil-
lating behavior and the decay rate of the Kd function. All the
results are obtained in the large distance asymptotic region,
as the preasymptotic calculation would be even more diffi-
cult. The consequences of the oscillating behavior will be
discussed at the end of the paper. The main goal is to present
correct analytical result to be compared in the future with the
numerical results, which may lead to the resolution of the
present discrepancies. The comparison with the experiments
is left for future work when the numerical calculation, by
which the very relevant preasymptotic behavior is also
achievable, is completed.

The paper is organized as follows. In Sec. II, we present
the outline of the problem and call attention to the differ-
ences between the calculations here and those of the earlier
works.3,4 In Sec. III, the integrals with respect to the energies
are performed, this is crucial in obtaining the correct form of
the anisotropy. The consequences are analyzed in Sec. IV.
Some of the matrix elements and further details of the cal-
culations are presented in Appendixes A and B, respectively.

II. THE OUTLINE OF THE PROBLEM

The magnetic impurity scatters the electron in the l=2
orbital channel, and the spin-orbit scattering is also restricted
to those.3,4 As in Refs. 3 and 4, we start with the conduction
electron propagator leaving and arriving at the impurity and
in the meantime is scattered by one of the heavy host atoms
due to strong spin-orbit scattering. Green’s function has a
simple form in the coordinate system where the impurity is
in the origin and the scattering atoms is on the z axis at a
position Rn, which is called the local system labeled by n.
The Anderson model10 is used for the scattering d-levels of
the host atom and the spin-orbit scattering is assumed to
happen on the d-level, and that determines the symmetry.
Following Ref. 4 the conduction electron Green’s function in
first order of the spin-orbit coupling is

Gkm�,k�m����i�n� =
�kk��mm�����

i�n − �k

+ �
n

1

i�n − �k

Wkk�
mm�
���

�Rn�

�i�n − �d��i�n − �d�

�
1

i�n − �k�
, �2�

where now the k dependence in W and the � dependence in
the d-level Green’s function are kept i.e., Gd�i�n�=1/
�i�n−�d�, where �d=�d− i� and �d �measured from the
Fermi level� and � are the energy and width of the d-level,
respectively, and −2	m	2 for the conduction electrons.

In Eq. �2�, we now have

Wkk�
mm�
���

�Rn�

= 
V2�B+�k,k���− + B−�k,k���+ + Bz�k,k���z�mm����,

�3�

which follows from a calculation similar to that in Ref. 4 and

 is the strength of the spin-orbit interaction. B±�k ,k�� and
Bz�k ,k�� are 5�5 matrices in the quantum number m, having
the forms

Bmm�
+ �k,k�� = ��3 + m���2 − m��vm�k�vm��k���m,m�+1,

�4a�

Bmm�
− �k,k�� = ��3 − m���2 + m��vm�k�vm��k���m,m�−1,

�4b�

Bmm��k,k��
z = mvm�k�vm��k���m,m�, �4c�

where the vm�k� matrix elements given in Appendix A are the
same as in Eq. �13� of Ref. 4. These are combinations of
oscillating functions sin�kRn� and cos�kRn� combined with
powers like �kRn�−m−n �n=1,2 , . . . �.

The next step of the calculation is the rotation of the co-
ordinate system from the n-local one to the one where the z
axis is perpendicular to the surface. The angle between the z
axis of the old �zn� and the new �z� coordinate system is
labeled by �n. The calculation of the spin factor of the self-
energy diagram �see Fig. 2� giving the anisotropy for the
impurity spin is also similar to the original one �see Eqs.
�21�–�25� of Ref. 4�.

The average over the positions of the scattering atoms Rn
and Rn� must be performed for the whole volume of the
sample, separately. For the sake of simplicity, the continuous
limit is applied outside the impurity spin. As was shown in
earlier works,2–4 in order to get the dominant contribution,
one of the n’s is near the impurity and the other one experi-
ences the existence of the surface at large distances.

The analytical part of the self-energy diagram �Fig. 2� is
now, however, more complicated as the W’s also depend on
four different electronic momenta and the corresponding en-
ergies appear in the energy denominators of the electron

FIG. 2. The self-energy diagram for the impurity spin. The
double line represents the spin, while the single one the conduction
electrons. The solid circles stand for the exchange interaction and
the crosses �, labeled by n for the effective spin-orbit interaction
on the orbital of the host atom at Rn.
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Green’s functions. In this way, the prefactors also depend on
the momenta, and that plays a crucial role in the following.

For the sake of simplicity, we consider the conduction
electron band with constant density of states �0 in the energy
interval −D�D, where � is measured from the Fermi
energy, and we will assume linear dispersion, i.e., the corre-
sponding k values are k=kF+� /vF, where vF is the Fermi
velocity.

As in a noble metal host such as Cu, Ag, or Au the d-band
is below the Fermi energy, it does not give a new singularity
in the energy integrals �see Sec. III�; thus, we can replace the
d-level propagator by a constant �0

−1.
Calculating the contribution of the diagram in Fig. 2, we

applied Abrikosov’s pseudofermion technique11 for the spin.
After performing the summation over the Matsubara fre-
quencies, we get

�0
4�

−D

D

d�1�
−D

D

d�2�
−D

D

d�3�
−D

D

d�4� 1

�1 − �2

�1 − nF��1��nF��3�
�3 + � − �1

1

�3 − �4
+ ��1 ↔ �2� + ��3 ↔ �4�

+ ��1 ↔ �2 and �3 ↔ �4�	
S2F1�Rn,�n,Rn�,�n�;k1,k2,k3,k4� + Sz
2F2�Rn,�n,Rn�,�n�;k1,k2,k3,k4�� , �5�

where � is the energy of the spin after analytical continuation and the F1 and F2 functions given in Appendix A are defined
in the same way as in Ref. 4.

As that diagram contains two host atoms, averages have to be taken over n and n�. According to our simple model,4 the
anisotropy factor3,4 reads as:

K =
1

a6 � d3Rn� d3Rn��0
4�

−D

D

d�1�
−D

D

d�2�
−D

D

d�3�
−D

D

d�4� 1

�1 − �2

�1 − nF��1��nF��3�
�3 + � − �1

1

�3 − �4
+ ��1 ↔ �2� + ��3 ↔ �4�

+ ��1 ↔ �2 and �3 ↔ �4�	F2�Rn,�n,Rn�,�n�;k1,k2,k3,k4� , �6�

where a3 is the size of the volume per host atom.
By changing the order of the summation over the host atoms with the energy integrals, the former can be evaluated in a

similar way as in Ref. 4.
Equation �29� of Ref. 4 now reads

K = �0
4�

−D

D

d�1�
−D

D

d�2�
−D

D

d�3�
−D

D

d�4� 1

�1 − �2

�1 − nF��1��nF��3�
�3 + � − �1

1

�3 − �4
+ ��1 ↔ �2� + ��3 ↔ �4� + ��1 ↔ �2 and �3 ↔ �4�	

�� 1

a6�
d

�

dRnRn
2�

r0

d

dRn�Rn�
2 �J1�Rn,Rn�;k1,k2,k3,k4� + J1�Rn,Rn�;k3,k4,k1,k2��

+
1

a6�
d

�

dRnRn
2�

d

�

dRn�Rn�
2 J2�Rn,Rn�;k1,k2,k3,k4�	 , �7�

where r0 is a short distance cutoff in the range of the atomic radius, and

J1�Rn,Rn�;k1,k2,k3,k4� = �2��2�
�n,min

�

d�n sin �n�
0

�

d�n� sin �n�F2�Rn,Rn�,�n,�n�;k1,k2,k3,k4� , �8�

J2�Rn,Rn�;k1,k2,k3,k4� = �2��2�
�n,min

�

d�n sin �n�
�n�,min

�

d�n� sin �n�F2�Rn,Rn�,�n,�n�;k1,k2,k3,k4� , �9�

where �n,min=arccos�d /Rn� and �n�,min=arccos�d /Rn��.
Since, according to the earlier works,2–4 the largest contribution comes from the first part of Eq. �7� corresponding to J1, we

will consider that.
The evaluation of the integrals with respect to �n and �n� gives

REVISED THEORY OF THE MAGNETIC SURFACE… PHYSICAL REVIEW B 75, 064425 �2007�

064425-3



J1�Rn,Rn�;k1,k2,k3,k4� =
4

15
J2�2�V2


�0
2 2d�Rn

2 − d2�
Rn

3 � �3v0�k2,Rn�v1�k1,Rn� + 3v0�k1,Rn�v1�k2,Rn� − 2v1�k1,Rn�v1�k2,Rn�

+ 2v1�k2,Rn�v2�k1,Rn� + 2v1�k1,Rn�v2�k2,Rn� − 8v2�k1,Rn�v2�k2,Rn���3v0�k4,Rn��v1�k3,Rn��

+ 3v0�k3,Rn��v1�k4,Rn�� + v1�k3,Rn��v1�k4,Rn�� + 2v1�k4,Rn��v2�k3,Rn�� + 2v1�k3,Rn��v2�k4,Rn��

+ 4v2�k3,Rn��v2�k4,Rn��� . �10�

Replacing k1, k2, k3, and k4 by kF gives back the half of Eq. �B2� of Ref. 4.
After a straightforward calculation of the integrals with respect to Rn and Rn� �see Appendix B�, the first part of Eq. �7�

corresponding to J1 reads

�0
4�

−D

D

d�1�
−D

D

d�2�
−D

D

d�3�
−D

D

d�4� 1

�1 − �2

�1 − nF��1��nF��3�
�3 + � − �1

1

�3 − �4
+ ��1 ↔ �2� + ��3 ↔ �4�

+ ��1 ↔ �2 and �3 ↔ �4�	 4

15
J2�2�V2


�0
2 2

�C�k1d,k2d�D�k3d,k4d� + C�k3d,k4d�D�k1d,k2d�� , �11�

where the functions C and D are given by Eqs. �B5� and �B11�, respectively.
As C and D are symmetric in their variables, we can change the integration variables according to the changes indicated in

the energy dependent factor in the integrand of Eq. �11�, resulting in a simpler form like

�0
4�

0

D

d�1�
−D

D

d�2�
−D

0

d�3�
−D

D

d�4� 1

�1 − �2

1

�3 + � − �1

1

�3 − �4
4

4

15
J2�2�V2


�0
2 2

��C�k1d,k2d�D�k3d,k4d� + C�k3d,k4d�D�k1d,k2d�� , �12�

where we have exploited the 1−nF��1� and nF��3� factors as well.

III. THE ENERGY INTEGRALS

In the following, the asymptotic behavior for large dis-
tances d is considered; therefore, only the leading order in
1/d is kept everywhere.

For large distances, the radial electronic wave functions
are fast oscillating as the energy is changed. These fast os-
cillations lead to essential cancellations. In order to keep
track of the cancellations in the limit d→�, the Riemann
theorem with the first asymptotic correction is applied in the
following forms:12

�
a

b

dsf�s�cos�xs� �
f�b�sin�xb�

x
−

f�a�sin�xa�
x

�13a�

and

�
a

b

dsf�s�sin�xs� �
f�a�cos�xa�

x
−

f�b�cos�xb�
x

, �13b�

which are valid in the leading order in 1/x, where f must be
integrable.

Let us consider the integrations with respect to the ener-
gies. In the first part of Eq. �12�, the integral with respect to
�2 is

�
−D

D

d�2
C�k1d,k2d�

�1 − �2
= �

kF−D/vF

kF+D/vF

dk2
C�k1d,k2d�

k1 − k2
. �14�

Introducing a new integration variable �k=k2−k1 and us-
ing linear dispersion �=vF�k−kF�, the integral reads

− �
−k1+kF−D/vF

−k1+kF+D/vF

d��k�
C„k1d,�k1 + �k�d…

�k

= −
d3

a3�
−k1+kF−D/vF

−k1+kF+D/vF

d��k�� fc+„k1d,�k1 + �k�d…�cos�2k1d�
cos��kd�

�k
− sin�2k1d�

sin��kd�
�k

�
+ fc−„k1d,�k1 + �k�d…

cos��kd�
�k

+ fs+„k1d,�k1 + �k�d…�sin�2k1d�
cos��kd�

�k
+ cos�2k1d�

sin��kd�
�k

�
+ dfs−„k1d,�k1 + �k�d…sin��kd� + �kd2fci„k1d,�k1 + �k�d…
Ci��2k1 + �k�d� − Ci��kd�� , �15�
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where we used the symmetry property of the cosine integral function Ci�−x�=Ci�x� and trigonometrical identities.13

To evaluate the terms containing the Ci�x� function we use

Ci�x� = − �
x

�

du
cos u

u
= − �

1

�

dv
cos xv

v
�16�

and change the order of the integrations with respect to v and �k.
Due to the cosine and sine functions in the integrand, the integral is determined by the singularity at �k=0 �k2=k1�.

Searching for this singularity, we expand the f functions around k1d in their second variables and then drop the terms which
are not singular at �k=0. Then, the integral in Eq. �15� is

−
d3

a3�
−k1+kF−D/vF

−k1+kF+D/vF

d��k�� cos��kd�
�k

�fc+�k1d,k1d�cos�2k1d� + fc−�k1d,k1d� + fs+�k1d,k1d�sin�2k1d��

+
sin��kd�

�k
�− fc+�k1d,k1d�sin�2k1d� + fs+�k1d,k1d�cos�2k1d��	 . �17�

The range of the integrations can be extended to −�→� as those integrals are independent of d, while the added parts are
fast oscillating and, therefore, they are O�1/kFd�, as can be proven by using the Riemann theorem given by Eq. �13�. Then,
using

�
−�

�

d��k�
cos��kd�

�k
= 0 �18�

and

�
−�

�

d��k�
sin��kd�

�k
= � , �19�

we get for Eq. �14�

�
−D

D

d�2
C�k1d,k2d�

�1 − �2
=

d3

a3��fc+�k1d,k1d�sin�2k1d� − fs+�k1d,k1d�cos�2k1d��

�
d3

a3�� 3825

4�k1d�6 sin�2k1d� −
225

2�k1d�5 cos�2k1d�� � −
d3

a3

225�

2�k1d�5 cos�2k1d� , �20�

where we kept only the leading order contribution in 1/k1d
as k1d�kFd�1 according to the range of the integration
with respect to k1 ��1� in Eq. �12�. Let us turn to the integra-
tion with respect to �1 in the first part of Eq. �12�, i.e., to

�
0

D d�1

�3 + � − �1
�

−D

D

d�2
C�k1d,k2d�

�1 − �2

= −
d3

a3�
0

D d�1

�3 + � − �1

225�

�k1d�5

1

2
cos�2k1d�

= −
d3

a3�
kF

kF+D/vF dk1

k3 +
�

vF
− k1

225�

�k1d�5

1

2
cos�2k1d� .

�21�

As �30�k3kF� in Eq. �12� and ��0, the integrand has
no singularities in the range of the integration; thus, in order

to find the leading-order contribution in 1/kFd, we can apply
the Riemann theorem given by Eq. �13�. Then, Eq. �21� is

�
0

D d�1

�3 + � − �1
�

−D

D

d�2
C�k1d,k2d�

�1 − �2

�
d3

a3

vF

�3 + �

225�

�kFd�5

1

2

sin�2kFd�
2d

=
225�

�kFa�3

�F

�3 + �

1

4

sin�2kFd�
�kFd�3

�22�

in leading order in 1/kFd, where we kept only the contribu-
tion of the lower limit, as the contribution of the upper limit
of the integral in Eq. �22� is proportional to 1/D; thus, it is of
lower order.

Now we have to evaluate the remaining integrals with
respect to �3 and �4 in the first part of Eq. �12� i.e.,

�
−D

0

d�3
1

�3 + �
�

−D

D

d�4
D�k3d,k4d�

�3 − �4
. �23�
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Starting with the first part of Eq. �23� corresponding to the g functions in D �see Eq. �B11��, we again introduce a new
integration variable �k=k4−k3 and use linear dispersion. Thus, Eq. �23� reads

�
kF−D/vF

kF

dk3
1

k3 − kF +
�

vF

�
kF−D/vF

kF+D/vF

dk4
D�k3d,k4d�

k3 − k4
= − �

kF−D/vF

kF

dk3
1

k3 − kF +
�

vF

�
−k3+kF−D/vF

−k3+kF+D/vF

d��k�
D„k3d,�k3 + �k�d…

�k
. �24�

In the first part containing the g functions �see Eq. �B11��,
we can repeat the considerations used in performing the in-
tegrals with respect to �1 and �2, giving

d3

a3��
kF−D/vF

kF

dk3
1

k3 − kF +
�

vF

�gc+�k3d,k3d�sin�2k3d�

− gs+�k3d,k3d�cos�2k3d�� . �25�

Since kF−D /vF�0, we can again apply the Riemann theo-
rem given by Eq. �13�. The terms coming from the lower
limit of the integrals are less by 1/D than the terms coming
from the upper limit of the integral, which give

−
d3

a3�
vF

�

� �gc+�kFd,kFd�
cos�2kFd�

2d
+ gs+�kFd,kFd�

sin�2kFd�
2d

�
� −

d3

a3�
vF

�
� 225

2�kFd�4

cos�2kFd�
2d

−
1125

�kFd�5

sin�2kFd�
2d

�
� −

1

�kFa�3

�F

�

225�

4�kFd�2 cos�2kFd� , �26�

where only the leading-order contribution in 1/kFd was kept.
Turning to the second part of Eq. �23� corresponding to

the h functions in D �see Eq. �B11��, after using the follow-
ing properties:

h�k3d,k4d,
r0

d
 =

1

�kFd�3h� k3

kF
,
k4

kF
,kFr0 , �27�

for the hc+/c−/s+ functions �see Eq. �B13�� and

�k3 − k4�dhs−�k3d,k4d,
r0

d


= � k3

kF
−

k4

kF
 1

�kFd�3hs−� k3

kF
,
k4

kF
,kFr0 �28�

for the hs− function, and introducing the s=k3 /kF and t
=k4 /kF new integration variables, we get

1

�kFa�3

P1�kFr0,��
15�

, �29�

where

P1�x,�� = 15��
1−D/�F

1

ds
1

s − 1 +
�

�F

�
1−D/�F

1+D/�F

dt
H�s,t,x�

s − t

�30�

and

H�s,t,x� = hc+�s,t,x�cos��s + t�x� + hc−�s,t,x�cos��s − t�x�

+ hs+�s,t,x�sin��s + t�x�

+ �s − t�hs−�s,t,x�sin��s − t�x� . �31�

Thus, the terms corresponding to the h functions give
d-independent contribution; therefore, Eq. �23� is Eq. �29� in
leading order in 1/kFd.

Combining Eq. �29� with Eqs. �22� and �12�, we get for
the first part of Eq. �12� in leading order in 1/kFd the fol-
lowing:

16�F�J�0�2�2
2

�0
4

1

�kFa�6 P1�kFr0,��
sin�2kFd�

�kFd�3 , �32�

where �=�V2�0 is the width of the d-levels due to
hybridization.10

Turning to the second part of Eq. �12�, after changing the
integration variables as �1↔�3 and �2↔�4 and performing
similar calculation as before, we get in leading order with
respect to 1/kFd the following:

16�F�J�0�2�2
2

�0
4

1

�kFa�6 P2�kFr0,��
sin�2kFd�

�kFd�3 , �33�

where

P2�x,�� = 15��
1

1+D/�F

ds
1

s − 1 −
�

�F

�
1−D/�F

1+D/�F

dt
H�s,t,x�

s − t
.

�34�

TABLE I. Comparison of Pnum�x ,�=0.01� obtained by numeri-
cal integration and Pappr�x ,�=0� obtained by Eq. �37� for x�0.5
−1.5.

x 0.5 0.75 1 1.25 1.5

Pnum�x ,�=0.01� −135.8 −428.1 −916.5 −1552.9 −2215.9

Pappr�x ,�=0� −138.3 −438.4 −952.6 −1664.6 −2514.1
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Thus, the anisotropy factor coming from the first part of
Eq. �7� corresponding to J1—giving the leading
contribution2–4—in leading order in 1/kFd is

K = 16�F�J�0�2�2
2

�0
4

1

�kFa�6 P�kFr0,��
sin�2kFd�

�kFd�3 , �35�

where

P�x,�� = P1�x,�� + P2�x,�� , �36�

which is finite for �=0.
Evaluating P by numerical integration, it turns out that for

x�1,14 the integrals with respect to t and s are dominated by
the t=s and s=1 singularities, respectively. Thus,

P�x,� = 0� � 15��
0

2

ds
H�s,s,x�

s − 1
ln� s

s − 2
�

= 15�H�1,1,x�
�2

2
, �37�

where we used D=�F. In Table I, we compare the results
obtained by numerical integration and by Eq. �37� for x
�0.5–1.5.

The result of Eq. �35� for the anisotropy factor is essen-
tially different from the earlier one �see Eq. �31� of Ref. 4�
obtained by an unjustified assumption which corresponds
formally to the approximations C�k1d ,k2d��C�kFd ,kFd�
and D�k3d ,k4d��D�kFd ,kFd� in Eq. �12�. The main differ-
ences are:

�1� It contains the oscillating factor sin�2kFd�.
�2� The asymptotic distance dependence is 1 / �kFd�3 in-

stead of 1/kFd; thus, it is essentially weaker.
�3� Instead of the f�� /D�Pold�kFr0� factor which contains

the short-range cutoff r0 and is estimated to be between 50
and 950 for ��0 and kFr0�0.5−1.5, we have Pnew�kFr0 ,��
which is between −140 and −2500 for �=0 and kFr0
�0.5–1.5; thus, in the asymptotic region using the same
parameters as in Eq. �32� in Ref. 4,

0.01

�d/Å�3 eV  �Kd� 
1.75

�d/Å�3 eV. �38�

Finally, we can raise the question of how justified is the
assumption of homogeneous distribution of the spin-orbit
scatterers. In order to give the answer, in the following the
scatterers are considered homogeneously distributed on
sheets which are parallel to the surface and separated by a
distance a. According to previous works,3,4 the pair of sheets
in equal distances from the impurity do not contribute to the
anisotropy; thus, only the unpaired ones must be considered.
The sheet n is in the distance na from the impurity and only
sheets with n�d /a are considered. As discussed in Refs.
2–4, one of the two scatterers n and n� is near the impurity
and the other one is far from it on one of the sheets consid-
ered. Therefore, the contributions of the sheets are additive.
The contributions of sheet n can be easily obtained from the
present calculation as

Kn = a
�

�d
K�d�d=na

, �39�

where the derivative gives the contribution of an infinitely
narrow layer and the prefactor provides the correct normal-
ization. Thus, the final result in the asymptotic region is

K = �
n�d/a

�

Kn � �
n�d/a

2akF
cos�2kFna�

�kFna�3 , �40�

where the omitted prefactor is the same as in Eq. �35�.
Thus, the separate sheets contribute by different signs and

amplitudes. Due to the fast decay by increasing n, only
sheets of restricted numbers are essential. Adding the contri-
bution of the sheets with different signs and amplitudes
�likely randomly distributed�, the final amplitude of the an-
isotropy �K� can be larger than �Kd�; thus, the 1/d3 decay rate
can be somewhat reduced. The situation is different in a co-
herent case with kFa= p�, where p is an integer. For even p,
the contributions have the same sign and �n�d/a1/n3

�a2 /d2, which provides a slower decay rate.

IV. CONCLUSIONS

The amplitude of the anisotropy is oscillating and weaker
than the one earlier estimated.3,4 In these changes, the sharp
edge in the R integral and thus, the existence of the surface
are crucial. We used a uniform distribution of the spin-orbit
scatterers in space. Considering the question of how the re-
sults are changed in the case where continuum layers of the
scatterers are considered, it is argued that the overall behav-
ior is not expected to change, but that only the amplitude can
be influenced moderately. Furthermore, it is assumed that the
spin-orbit scattering is pointlike, but a finite extension rd �it
is assumed that kFrd�� smears somewhat the sin�2kFd�
function in Eq. �35�. The actual size of that can be estimated
only by electronic structure calculations and certainly will be

FIG. 3. The level splitting due to the surface anisotropy for �a�
integer �e.g., S=2� and �b� half-integer �e.g., S=5/2� spins. It is also
indicated whether the electrons can be scattered by the degenerate
ground states or not.
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included in the recent work of one of the authors �Szunyogh�
and his co-workers, which is in progress.9

How the spin is frozen by the surface anisotropy is essen-
tially different from how it is done in the previous works3,4

as Kd is not always positive �see Fig. 3� and also depends on
whether the spin is integer or half-integer.

�i� Integer spin �e.g., S=2�. The ground state is either a
singlet or a doublet depending on the sign of Kd; however,
the electron cannot be scattered by transition in the doublet
as the spin momentum difference is �S= ±4 and turning the
electron spin allows only �S= ±1. Thus, the spin at low
temperature can be completely frozen in.

�ii� Half-integer spin �e.g., S=5/2�. The ground state is
always a doublet; however, in one of the cases �S= ±1
which can cause scattering, in contrast to the case where
�S= ±5. Thus, only half of the impurities can cause electron
spin flips at low temperature, which is different from the
previously assumed Kd�0 case.

This result shows analogies with Ref. 15, where magnetic
molecules with large spins on a metallic surface were con-
sidered. The spin levels are split in a similar way and elec-
tron induced transitions are allowed only between certain
levels.

For comparison with experiment, the preasymptotic be-
havior is very essential, which is beyond the scope of the
present paper. The electronic calculations in progress9 must
provide this information including the amplitude of the an-
isotropy as in the other model in Ref. 8.

The present results valid in the asymptotic region can pro-
vide a good possibility of testing the numerical calculation.
Detailed comparison with experiments will follow after the
completion of the numerical calculation, which will provide
more necessary information.
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APPENDIX A:

The vm�k� matrix elements are the same as in Eq. �13� of
Ref. 4:

v0�k,Rn� = 10� sin�kRn�
2kRn

+
3 cos�kRn�

�kRn�2 −
12 sin�kRn�

�kRn�3

−
27 cos�kRn�

�kRn�4 +
27 sin�kRn�

�kRn�5 � , �A1a�

v1�k,Rn� = 15�−
cos�kRn�
�kRn�2 +

5 sin�kRn�
�kRn�3 +

12 cos�kRn�
�kRn�4

−
12 sin�kRn�

�kRn�5 � , �A1b�

v2�k,Rn� = 15�−
sin�kRn�
�kRn�3 −

3 cos�kRn�
�kRn�4 +

3 sin�kRn�
�kRn�5 � .

�A1c�

The F1 and F2 functions are defined in the same way as in
Ref. 4, namely,

F1�Rn,�n,Rn�,�n�;k1,k2,k3,k4� =
2J2

�0
4 f1122 �A2a�

and

F2�Rn,�n,Rn�,�n�;k1,k2,k3,k4� =
2J2

�0
4 �f1111 − f1212 − f1122� ,

�A2b�

where

f�1�2�3�4
= �

mm�

W̃
k1k2

m1m2

�1�2

�Rn,�n�W̃
k4k3

m2m1

�4�3

�Rn�,�n�� . �A3�

W̃ gives the form of W in the rotated coordinate system
�where the z axis is perpendicular to the surface� given by

W̃kk�
mm�
���

�Rn,�n� = �m+�,m�+�� �
m̄m̄�

�̄�̄�

dmm̄
�2� ��n�d��̄

�1/2�

���n�Wkk�
m̄m̄�
�̄�̄�

�Rn�dm̄�m�
�2� �− �n�d�̄���

�1/2� �− �n� ,

�A4�

where the Wigner formula for rotation matrices16 was used.

APPENDIX B:

Here, we perform the integrations with respect to Rn and
Rn� in the first part of Eq. �11�. Let us start with the integra-
tion with respect to Rn, namely,

C̃�k1,k2� ª
1

a3�
d

�

dRnRn
2d�Rn

2 − d2�
Rn

3 �3v0�k2,Rn�v1�k1,Rn�

+ 3v0�k1,Rn�v1�k2,Rn� − 2v1�k1,Rn�v1�k2,Rn�

+ 2v1�k2,Rn�v2�k1,Rn� + 2v1�k1,Rn�v2�k2,Rn�

− 8v2�k1,Rn�v2�k2,Rn�� . �B1�

After substituting the vm�k ,Rn� matrix elements given by
Eq. �A1� and introducing the dimensionless integration vari-
able y=Rn /d and notations t1=k1d and t2=k2d, we get

C̃�k1,k2� = C�k1d,k2d� , �B2�

where
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C�t1,t2� =
d3

a3�
1

�

dy
y2 − 1

y

Cc+�t1,t2,y�cos��t1 + t2�y�

+ Cc−�t1,t2,y�cos��t1 − t2�y�

+ Cs+�t1,t2,y�sin��t1 + t2�y�

+ Cs−�t1,t2,y�sin��t1 − t2�y�� . �B3�

The occurring integrals with respect to y look like

Gc�t,n� ª �
1

�

dy
y2 − 1

y

cos�ty�
yn �B4a�

and

Gs�t,n� ª �
1

�

dy
y2 − 1

y

sin�ty�
yn . �B4b�

Evaluating the Gs and Gc functions analytically by using
MATHEMATICA, we get

C�t1,t2� =
d3

a3 
fc+�t1,t2�cos�t1 + t2� + fc−�t1,t2�cos�t1 − t2�

+ fs+�t1,t2�sin�t1 + t2� + �t1 − t2�fs−�t1,t2�sin�t1 − t2�

+ �t1 − t2�2fci�t1,t2��Ci�t1 + t2� − Ci�t1 − t2��� , �B5�

where for t1= t2= t�1,

fc+�t,t� �
3825

4t6 ,

fc−�t,t� � −
225

2t4 ,

fs+�t,t� �
225

2t5 ,

fs−�t,t� �
225

2t4 ,

fci�t,t� �
225

2t4 , �B6�

and Ci�t�=−�t
�du�cos u /u� is the cosine integral function.

Let us consider now the integration with respect to Rn� in
the first part of Eq. �11�:

D̃�k3,k4� ª
1

a3�
r0

d

dRn�Rn�
2 �3v0�k4,Rn��v1�k3,Rn��

+ 3v0�k3,Rn��v1�k4,Rn�� + v1�k3,Rn��v1�k4,Rn��

+ 2v1�k4,Rn��v2�k3,Rn�� + 2v1�k3,Rn��v2�k4,Rn��

+ 4v2�k3,Rn��v2�k4,Rn��� . �B7�

After substituting the vm�k ,Rn�� matrix elements given by
Eq. �A1� and introducing the dimensionless integration vari-
able y�=Rn� /d and notations t3=k3d, t4=k4d, and y0=r0 /d,
we get

D̃�k3,k4� = D�k3d,k4d� , �B8�

where

D�t3,t4� =
d3

a3�
y0

1

dy�y�2
Dc+�t3,t4,y��cos��t3 + t4�y��

+ Dc−�t3,t4,y��cos��t3 − t4�y��

+ Ds+�t3,t4,y��sin��t3 + t4�y��

+ Ds−�t3,t4,y��sin��t3 − t4�y��� . �B9�

The occurring integrals with respect to y� look like

Hc�t,n� ª �
y0

1

dy�y�2cos�ty��
y�n �B10a�

and

Hs�t,n� ª �
y0

1

dy�y�2sin�ty��
y�n . �B10b�

Evaluating the Hs and Hc functions analytically by using
MATHEMATICA, we get

D�t3,t4� =
d3

a3 
gc+�t3,t4�cos�t3 + t4� + gc−�t3,t4�cos�t3 − t4�

+ gs+�t3,t4�sin�t3 + t4� + �t3 − t4�gs−�t3,t4�sin�t3 − t4�

+ hc+�t3,t4,y0�cos��t3 + t4�y0�

+ hc−�t3,t4,y0�cos��t3 − t4�y0�

+ hs+�t3,t4,y0�sin��t3 + t4�y0�

+ �t3 − t4�hs−�t3,t4,y0�sin��t3 − t4�y0�� , �B11�

where for t3= t4= t�1,
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gc+�t,t� �
225

2t4 ,

gc−�t,t� �
225

2t4 ,

gs+�t,t� � −
1125

t5 ,

gs−�t,t� �
1125

2t6 , �B12�

and

hc+�t3,t4,y0� =
20 250

t3
5t4

5y0
7 −

8100

t3
3t4

5y0
5 −

20 250

t3
4t4

4y0
5 −

8100

t3
5t4

3y0
5 +

1350

t3
2t4

4y0
3

+
6525

2t3
3t4

3y0
3 +

1350

t3
4t4

2y0
3 −

225

2t3
2t4

2y0
, �B13a�

hc−�t3,t4,y0� = −
20 250

t3
5t4

5y0
7 +

8100

t3
3t4

5y0
5 −

20 250

t3
4t4

4y0
5 +

8100

t3
5t4

3y0
5 +

1350

t3
2t4

4y0
3

−
6525

2t3
3t4

3y0
3 +

1350

t3
4t4

2y0
3 −

225

2t3
2t4

2y0
, �B13b�

hs+�t3,t4,y0� =
20 250

t3
4t4

5y0
6 +

20 250

t3
5t4

4y0
6 −

1350

t3
2t4

5y0
4 −

8100

t3
3t4

4y0
4 −

8100

t3
4t4

3y0
4

−
1350

t3
5t4

2y0
4 +

1125

2t3
2t4

3y0
2 +

1125

2t3
3t4

2y0
2 , �B13c�

and

hs−�t3,t4,y0� = −
20 250

t3
5t4

5y0
6 +

1350

t3
3t4

5y0
4 −

6750

t3
4t4

4y0
4 +

1350

t3
5t4

3y0
4 −

1125

2t3
3t4

3y0
2 .

�B13d�
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