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We present the first ab-initio type descriptions of the temperature dependence of
the magnetic part of the electrical conductivity. We implemented the Disordered
Local Moment (DLM) scheme into Kubo’s linear-response formalism using the
screened Korringa-Kohn-Rostoker (KKR) approach. In order to test the
proposed scheme, we calculated the magnetic resistivity of bulk Fe and Co.
The results seem to give a qualitatively correct temperature dependence of the
magnetic part of the electrical resistivity in the ferromagnetic region.
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1. Introduction

The age of spintronics started with the discovery of giant magnetoresistance (GMR) in
1988 [1,2]. Presently GMR based magnetic read heads are commonly used in magnetic
recording [3]. The understanding of the underlying effects as well as the design of new
spintronics devices require a proper theoretical description of magneto-resistivities.
Nowadays zero-temperature ab-initio descriptions of the electric resistivity have become
almost a standard procedure by making use of the Kubo-Greenwood equation and the
Screened Korringa-Kohn-Rostoker method [4–6]. At non-zero temperatures, however,
additional effects such as electron–phonon scattering and electron–magnon scattering
become rather important. Assuming that the electron–phonon interaction (Re�ph),
impurity scattering (Ri) and the magnetic part (RM) contribute additively, the total
temperature-dependent resistances of the parallel (P) and the antiparallel (AP)
configurations of a spin valve corresponding to a simple parent lattice are given by

RPðAPÞðT Þ ¼ R
PðAPÞ
M ðT Þ þ Ri þ Re�phðT Þ, ð1Þ

where the impurity and phonon scattering contributions are clearly independent of the
magnetic configuration. The temperature-dependent GMR ratio,

GMRðT Þ ¼
RAP � RP

RP
¼

RAP
M ðT Þ � RP

MðT Þ

RP
MðT Þ þ Ri þ Re�phðT Þ

, ð2Þ
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depends therefore only in the denominator on the temperature-dependent phonon–
electron contribution.

Calculations of the GMR ratio at zero temperature with the ab-initio Kubo–KKR
method were performed for example by Weinberger and Szunyogh for a FeCo spin valve
structure [7]. Clearly enough an ab-initio evaluation of temperature-dependent GMR
ratios would also require a proper description of the temperature dependence of the
magnetic resistivity. Earlier theoretical studies dealing with the problem of temperature-
dependent magnetic resistivities, %M(T ), started either from the Boltzmann equation using
a simple s-d scattering model Hamiltonian [8–10], or applying the so-called two-current
model of Fert [11–15]. In both cases experimental parameters were used in order to
determine %M(T ). According to our knowledge up-to-now there is no fully ab-initio
description for the temperature-dependent magneto-resistivity in the literature. The aim of
this paper is therefore to develop a theoretical tool for the calculation of %M(T ). For this
purpose we implemented the Disordered Local Moment (DLM) scheme in the KKR-
Kubo formalism. As a trial system we tested this new approach for the bulk systems Fe
and Co. Quite clearly the present formalism can easily be carried over to alloyed layered
systems (two-dimensional translational symmetry) by making use of the properties of the
screened-KKR method [16]. Only then does an evaluation of the GMR(T ) of a given
system become accessible.

2. Theory

2.1. The Disordered Local Moment approach

The Disordered Local Moments (DLM) theory in the context of the Korringa-Kohn-
Rostoker Coherent Potential Approximation (KKR–CPA) was proposed originally by
Györffy et al. [17] and is based on the idea that in itinerant metallic magnets, on a certain
time-scale �, which is small compared to the characteristic time of spin fluctuations, but
longer than the electron hopping times, the spin orientations of the electrons leaving an
atomic site are sufficiently correlated with those arriving such that a nonzero
magnetization exists when the appropriate quantity is averaged over �. In the DLM
scheme the magnetic excitations are modelled by associating local spin-polarization axes
{ê} with all lattice sites that vary very slowly on the time-scale of the electronic motions.
These local moment degrees of freedom produce local magnetic fields centred at lattice
sites which in turn affect the electronic motions and are self-consistently maintained by
them. By taking appropriate ensemble averages over orientational configurations the
system’s magnetic properties can be determined. As a mean field approximation, the CPA
was applied for these ensemble averages.

The DLM for three-dimensional translationally invariant systems was first used to
calculate the magnetic properties of the paramagnetic state of ferromagnetic materials
[17,18], and later on was generalized to non-zero temperature ferromagnetic states by
taking into account relativistic effects in order to evaluate temperature-dependent
magnetic anisotropies [19,20]. An implementation of the DLM in the screened-KKR
method [16]; i.e. an implementation for two-dimensional translationally invariant systems
facilitated the description of anisostropic surface magnetism and thin films [21]. In the
following section we present an implementation of this particular DLM scheme into the
KKR-Kubo-Greenwood formalism.

2616 Á. Buruzs et al.
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2.2. The Kubo-Greenwood equation at finite temperatures

For the electrical conductivity calculations we used Kubo’s [22] linear-response theory.

In this approximation the static (q¼ 0,!¼ 0) electrical conductivity is given by [23]:

��� ¼
� �h

NVat

X
m,n

J�mnJ
�
nm� "F � "mð Þ� "F � "nð Þ

* +
, ð3Þ

where �¼ {x, y, z}, N is the number of atoms, Vat the atomic volume, h. . .i refers to the

statistical average, "F is the Fermi energy, and J�mn are the matrix elements of the current

operator,

J�mn ¼ mjJ�jn
� �

,

in the basis of the eigenstates jni of the unperturbed Hamiltonian, the current operator

being given by

~JðrÞ ¼ ec þðrÞ �! ðrÞ: ð4Þ

By making use of the identity,

X
n

nj i nh j� "� "nð Þ ¼ �
1

�
ImGþð"Þ ¼ �

1

2�i
½Gþð"Þ � G�ð"Þ�, ð5Þ

G�ð"Þ ¼ lim
�!�0

Gð"þ i�Þð"Þ: ð6Þ

Equation (3) can be rewritten as

��� ¼
� �h

NVat
Tr J�ImGþð"FÞJ

�ImGþð"FÞ
� �

, ð7Þ

or, by introducing the notation

"� ¼ lim
�!�0

"þ i�,

as

��� ¼
1

4
~���ð"

þ, "þÞ þ ~���ð"
�, "�Þ � ~���ð"

þ, "�Þ � ~���ð"
�, "þÞ

� �
, ð8Þ

where

~���ð"1, "2Þ ¼
� �h

NVat
Tr J�ImGþð"1ÞJ

�ImGþð"2Þ
� �

, ð9Þ

ð"i 2 f"
þ, "�g; i ¼ 1, 2Þ: ð10Þ

Expressing the Green’s functions in terms of scattering path operators (SPO) �pi,qj(") as
described in [5] the resistivity can then be obtained by assuming a region consisting of n

intermediate atomic layers in between two semi-infinite systems. If n tends to infinity,
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the resistivity converges to the corresponding bulk value. According to [5] or [6] a typical

contribution ~���ð"1, "2Þ is then given by

~���ð"1, "2Þ ¼
� �h

nN0Vat

Xn
p¼1

X
i2IðL2Þ

Xn
q¼1

X
j2IðL2Þ

Tr Jpi
� ð"2, "1Þ�

pi,qjð"1ÞJ
qj
� ð"1, "2Þ�

qj,pið"2Þ
D E

, ð11Þ

where the summations over i and j cover all pairs of sites situated in layers 05p, q� n.

In Equation (11), N0 is the number of atoms in a layer and I(L2) is the set of indices

belonging to a simple two-dimensional lattice L2.
In the basis of regular scattering solutions Z

pi
� ðrpi, "Þ [24] the matrix elements of the

current operator, Equation (4), are given by

J
pi
�,��0 ð"1, "2Þ ¼ ec

Z
WS

Z
pi
� ðrpi, "1Þ

þ��Z
pi
�0 ðrpi, "2Þd

3rpi, ð12Þ

where �¼ 	� and the integration has to be performed over a particular unit

(Wigner-Seitz) cell. Provided that two-dimensional invariance applies in all layers under

consideration we can make use of the fact that

Jp
�ð"1, "2Þ ¼ Jp0

� ð"1, "2Þ ¼ Jpi
� ð"1, "2Þ8i 2 IðL2Þ: ð13Þ

For this very reason one can easily see that for each layer p the sum over i2 I(L2) gives N0

times the same contribution, therefore,

~���ð"1, "2Þ ¼
C

n

Xn
p¼1

Xn
q¼1

X
j2IðL2Þ

Tr Jp
�ð"2, "1Þ�

p0,qjð"1ÞJ
q
�ð"1, "2Þ�

qj,p0ð"2Þ
D E !

, ð14Þ

with C¼� �h/Vat. If we neglect the so-called vertex corrections [4] we can reformulate the

statistical average of the products in the above equation as

~���ð"1, "2Þ ¼
C

n

Xn
p¼1

Xn
q¼1

X
j2IðL2Þ

Z Z
dê0 dêjPðfê0, êjgÞ

� Tr Jp0
� ð"2, "1, ê0Þ �

p0,qjð"1Þ
� �

p0ê0, qjêj
Jqj� ð"1, "2, êjÞ �

qj,p0ð"2Þ
� �

qjêj, p0ê0

� �
ð15Þ

where P({ê0, êj}) is the probability of an {ê0, êj} configuration. The restricted averages

h�p0,qj("1)ip0ê0,qjêj can be obtained by freezing in the local moment directions in sites 0 and j

and averaging over all other lattice sites. Note that now also the current matrix elements

are direction dependent, since a rotational transformation of Equation (12) yields

J
p
�,��0 ð"1, "2, êÞ ¼

X3

¼1

X
� �0

O���R�
J
p

,�:�0 ð"1, "2ÞO�0�0 , ð16Þ

where J
p
�,�:�0 ð"1, "2Þ refers to a current matrix if the local moment points along the ẑ axis,

and O�� and R�
 denote appropriate representations of that rotation which takes the ẑ

axis into the ê axis in the angular momentum as well as in coordinate space, respectively.
The sum in Equation (15) can be split into a site-diagonal and an off-diagonal term,

~���ð"1, "2Þ ¼ ~�0��ð"1, "2Þ þ ~�1��ð"1, "2Þ, ð17Þ

2618 Á. Buruzs et al.
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where the diagonal part is given by

~�0��ð"1, "2Þ ¼
C

n

Xn
p¼1

Z
dêPpðêÞTr Jp

�ð"2, "1, êÞ �
p0,p0ð"1Þ

� �
p0 ê

J p
�ð"1, "2, êÞ �

p0,p0ð"2Þ
� �

p0 ê

� �
: ð18Þ

Expressing the restricted scattering path operators within the single-site CPA approxima-

tion [24] and using the underlying two-dimensional translational invariance,

� pi,pið"Þ
� �

piê
¼ � pi,pic ð"ÞD

pið", êÞ ¼ � ppc ð"ÞD
pð", êÞ8i 2 IðL2Þ, ð19Þ

one obtains

~�0��ð"1, "2Þ ¼
C

n

Xn
p¼1

Z
dêPpðêÞTr Jp

�ð"2, "1, êÞ�
pp
c ð"1ÞD

pð"1, êÞJ
p
�ð"1, "2, êÞ�

pp
c ð"2ÞD

pð"2, êÞ
h i

,

ð20Þ

where Pp(ê) is the probability density function of the local moment direction distribution

in layer p [21], and

Dpð", êÞ ¼ ½Iþ ðmpð", êÞ �mc,pð"1ÞÞ�
pp
c ð"Þ�

�1,

with mc,p("1) and mp(", ê) being the inverse scattering matrices [24] of the coherent media,

and the local moment ‘impurity’ pointing in the ê direction, respectively.
The site off-diagonal part can be further decomposed into two terms:

~�1��ð"1, "2Þ ¼ ~�2��ð"1, "2Þ þ ~�3��ð"1, "2Þ, ð21Þ

where

~�2��ð"1, "2Þ ¼
C

n

Xn
p¼1

Xn
q¼1

ð1� �pqÞ
X

j2IðL2Þ

Tr Jp
�ð"2, "1Þ�

p0,qjð"1ÞJ
q
�ð"1, "2Þ�

qj,p0ð"2Þ
D E

ð22Þ

and

~�3��ð"1, "2Þ ¼
C

n

Xn
p¼1

X
j2IðL2Þnf0g

Tr Jp
�ð"2, "1Þ�

p0,pjð"1ÞJ
p
�ð"1, "2Þ�

pj,p0ð"2Þ
D E

: ð23Þ

As one can see ~�2�� arises from sites located in different layers, while ~�3�� arises from sites in

one and the same layer. Restricting the local moments on two different sites, the restricted

SPO can be written as [24]

� p0,qjð"Þ
� �

p0êi, qjêj
¼ ~D

p
ð", êiÞ�

p0,qj
c ð"ÞDqð", êjÞ,

with

~D
p
ð", êÞ ¼ ½Iþ � ppc ð"Þðmpð", êÞ �mc,pð"ÞÞ�

�1:
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Using this expression and neglecting vertex corrections ~�2�� can be written as

~�2��ð"1, "2Þ ¼
C

n

Xn
p¼1

Xn
q¼1

ð1� �pqÞ
X

j2IðL2Þ

Z Z
dêi dêjPpðêiÞPqðêjÞ

� Tr Jp
�ð"2, "1, êiÞ

~D
p
ð"1, êiÞ�

p0,qj
c ð"1ÞD

qð"1, êjÞ
n

� Jq�ð"1, "2Þ
~D
q
ð"2, êjÞ�

qj,p0
c ð"2ÞD

pð"2, êiÞ
o
,

or, by introducing the quantity,

~J
p,av

� ð"2, "1Þ ¼

Z
dêPpðêiÞD

pð"2, êÞJ
p
�ð"2, "1, êÞ

~D
p
ð"1, êÞ, ð24Þ

as

~�2��ð"1, "2Þ ¼
C

n

Xn
p¼1

Xn
q¼1

ð1� �pqÞ �
X

j2IðL2Þ

Tr ~J
p,av

� ð"2, "1Þ�
p0,qj
c ð"1Þ ~J

q,av

� ð"1, "2Þ�
qj,p0
c ð"2Þ

n o
:

From the Fourier transformed form,

� p0,qjc ð"Þ ¼
1

�SBZ

Z
ei
~k� ~Rj� pqc ð

~k, "Þd2k,

where �SBZ is the volume of the surface Brillouin zone, and using the orthogonality
relations, X

j2IðL2Þ

� p0,qjc ð"1Þ�
qj,p0
c ð"2Þ ¼

1

�SBZ

Z
� pqc ð

~k, "1Þ�
qp
c ð
~k, "2Þd

2k,

we finally obtain for ~�2��,

~�2��ð"1, "2Þ ¼
C

n�SBZ

Xn
p¼1

Xn
q¼1

ð1� �pqÞ

Z
Tr ~J

p,av

� ð"2, "1Þ�
pq
c ð
~k, "1Þ ~J

q,av

� ð"1, "2Þ�
qp
c ð
~k, "2Þ

n o
d2k:

ð25Þ

Similarly, using again a lattice Fourier transformation we obtain for ~�3��ð"1, "2Þ,

~�3��ð"1, "2Þ ¼
C

n�SBZ

Xn
p¼1

Z
Tr ~J

p,av

� ð"2, "1Þ�
pp
c ð
~k, "1Þ ~J

p,av

� ð"1, "2Þ�
pp
c ð
~k, "2Þ

n o
d2kþ ~�3corr�� ð"1, "2Þ,

ð26Þ

where ~�3corr�� ð"1, "2Þ arises from extending the sum in Equation (24) to 8j2 I(L2) and
subtracting the term for j¼ 0,

~�3corr�� ð"1, "2Þ ¼ �
C

n

Xn
p¼1

Z Z
dêi dêjPpðêiÞPpðêjÞ � Tr Jp

�ð"2, "1, êiÞ
~D
p
ð"1, êiÞ�

pp
c ð"1ÞD

pð"1, êjÞ
n

� Jp
�ð"1, "2Þ

~D
p
ð"2, êjÞ�

pp
c ð"2ÞD

pð"2, êiÞ
o

¼ �
C

n

Xn
p¼1

Tr ~J
p,av

� ð"2, "1Þ�
pp
c ð"1Þ

~J
p,av

� ð"1, "2Þ�
pp
c ð"2Þ

n o
:
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Summarizing all the terms, the electrical conductivity obtained from Equation (8) is of
the form,

~���ð"1, "2Þ ¼
C

n

Xn
p¼1

Z
PpðêÞTr Jp0� ð"2, "1, êÞ�

pp
c ð"1ÞD

pð"1, êÞJ
p
�ð"1, "2, êÞ�

pp
c ð"2ÞD

pð"2, êÞ
n o

dê

�

� Tr ~J
p,av

� ð"2, "1Þ�
pp
c ð"1Þ

~J
p,av

� ð"1, "2Þ�
pp
c ð"2Þ

� �

þ
1

�SBZ

Xn
q¼1

Z
Tr ~J

p,av

� ð"2, "1Þ�
pq
c ð
~k, "1Þ ~J

q,av

� ð"1, "2Þ�
qp
c ð
~k, "2Þ

n o
d2k

)
: ð27Þ

2.3. Computational details

In order to perform the calculations we first have to calculate the temperature-dependent
Weiss fields as described in [21], which provide the probability distributions Pp(ê), and

then evaluate Equation (27).
We calculated the magnetic part of the conductivity of bulk Fe and Co using

Equations (27) and (8) in terms of the screened KKR. For the ~k integration in
Equation (27) we used a quadrature with 1600 points in the two-dimensional Brillouin
zone, which gave converged results. The so-called intermediate region consists of n
atomic layers; the ~�ð"F � i�, "F � i�Þ in Equation (8) were calculated for finite imaginary

parts � of the Fermi energy. A side-effect of considering a finite number of atomic layers is
a (1/n)-like decay [25] in the calculated resistivity

%��ðn, �Þ ¼
1

���ðn, �Þ
	 %��ð�Þ þ

�%��ð�Þ

n
: ð28Þ

Therefore plotting n%��(n, �) versus n the slope of the curve for large enough n yields
%��(�), the bulk resistivity value at a given value of �. In practice it turned out that

n%��(n, �) is already linear in n for n5 50 layers. For the � dependence of the resistivity we
found the same linear dependence already described in the literature [26,27], namely

%�� ¼ lim
�!0

%��ð�Þ: ð29Þ

For this continuation to the real axis we used %��(�) values corresponding to �¼ 1 and

2 mRyd. The magnetization direction was chosen to be perpendicular to the intermediate
layers, i.e., pointed along to the ẑ direction, which in turn causes a small difference between
the %zz and %xx¼ %yy components of the resistivity. Since this difference turned out to be
smaller than 1 m� cm in the whole temperature regime, we confine ourselves to using the

%zz component of the resistivity only.

3. Results for bulk Fe and Co

First we calculated the temperature-dependent Weiss fields, which are needed for the finite
temperature thermal averaging in Equation (27). In using the experimental lattice
parameter (5.4 a.u.) we obtained a too large Curie temperature (Tc) for pure bcc Fe,
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namely 1670K, which is about 60% larger than the experimental Tc of 1040K. This

deficiency is probably due to a shortcoming of the mean-field approximation. However,

for a lattice parameter of 5.07 a.u., we can recover the experimental Tc. In Figure 1 we

show the calculated Tc for bcc Fe versus the lattice parameter used in the calculations.

It should be noted that the lattice parameter at the experimental Curie temperature is even

larger than the one at zero temperature, namely 5.55 a.u. according to Section 1.1.2.2 of

[28]. Since the LDA usually yields lattice parameters smaller than the experimental ones

(5.3 a.u. [29]) Györffy et al. [17] used this particular lattice parameter, and in employing

the non-relativistic version of the DLM found a Curie temperature of 1250K in terms of

the divergence of the paramagnetic spin susceptibility.
As a second test system we chose Co bulk which – as is well-known – shows a phase

transition from hcp to fcc at about 600–800K, which, however, by using only the fcc

geometry in the whole temperature regime was neglected in the present calculations.

At zero temperature the theoretical LDA lattice parameter (6.69 a.u. [29]) differs by less

than 1% from the experimental one. At the experimental Tc, however, the lattice

parameter is considerably enlarged, namely amounts to 6.84 a.u. [28]. In the Co case the

DLM considerably underestimates the Curie temperature; even at 6.84 a.u. we only get

950K. The experimental Tc is 1380K, which can be simulated in terms of the DLM by

using a lattice constant of 7.04 a.u.; see also Figure 2.
From the self-consistent potentials corresponding to the paramagnetic DLM state we

first calculated the Weiss fields as described in [21] for specific temperature points. In using

these Weiss fields we then calculated the corresponding temperature-dependent electrical

conductivities in terms of Equation (8). For low temperatures, it seems that the

ferromagnetic potentials (corresponding to zero temperature, screened KKR without

DLM) describe the electronic structure better. It turned out, however, that the difference

between the ferromagnetic and paramagnetic potential only influences the conductivity

results marginally. In Figure 3 the results for bcc Fe are displayed corresponding (a) to the

experimental lattice parameter which gave an overestimated Curie temperature, and (b) for

5.0 5.1 5.2 5.3 5.4 5.5

800

1000

1200

1400

1600 Fe

T
c(

K
)

a (a.u.)

Figure 1. Calculated Curie temperature for bcc Fe corresponding to different lattice parameters.
The experimental zero temperature lattice parameter is 5.4 a.u., the experimental Curie temperature
is 1040K.
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the lattice parameter that recovers the experimental Curie temperature. For comparison

we also show the experimental total resistivity values from [28].
It became customary [30] to assume that well above the Curie temperature only

phonon–electron interactions contribute to the resistivity. By using the Bloch-Grüneisen

formula [31],

%ph�eðT Þ ¼ K
T

�D

	 
5

J
�D

T

	 

, ð30Þ

6.65 6.70 6.75 6.80 6.85 6.90 6.95 7.00 7.05

400

600

800

1000

1200

1400 Co

T
c(

K
)

a (a.u.)

Figure 2. Calculated Curie temperature of fcc Co corresponding to different lattice parameters.
The experimental Curie temperature is 1380K, at which the lattice parameter is 6.84 a.u. [28].
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Bulk Fe resistivity

Experimental total resistivity
Prediction for ρmagn from Exp

DLM theory, a=5.07 a.u.
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)
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Figure 3. (Colour online) Black circles: experimental total resistivity from [28]. Blue up-triangles:
magnetic part of the resistivity with detached phonon–electron contribution of Bloch-Grüneisen
form. Red down triangles: our results corresponding to the experimental lattice parameter (5.4 a.u.),
green squares: for a lattice constant of 5.07 a.u.

Philosophical Magazine 2623

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
x
 
P
l
a
n
c
k
 
I
n
s
t
 
&
 
R
e
s
e
a
r
c
h
 
G
r
o
u
p
s
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
3
:
1
0
 
2
2
 
N
o
v
e
m
b
e
r
 
2
0
0
8



where �D is the Debye temperature, and J is a Debye integral [31], we can fit the
parameter K to the linear part of the experimental Fe resistivity above Tc. Subtracting this
Bloch-Grüneisen term from the total resistivity we get a first guess for the magnetic
resistivity, which is also displayed in Figure 3. It has to be mentioned that this
approximation, although used by Weiss and Marotta [30] for several magnetic metals, is
still theoretically not justified, since in this procedure the magnon–phonon interactions [8]
are completely neglected.

It can be seen from this figure that the DLM gives the right order of magnitude of the
magnetic resistivity, but however is systematically too large. The deviation between the
calculated resistivities corresponding to the two different lattice parameters used is less
than 40% at room temperature and also for temperatures far below the Curie temperature.
The DLM result for the experimental lattice parameter fits well to the experimental total
resistivity for temperatures below about 700K, although the total resistivity ought to be
larger than the pure magnetic contribution. We also have to mention that the DLM gives
a constant magnetic resistivity in the paramagnetic phase since there the probability
density function is constant, i.e., is temperature independent above the Curie temperature.

The results for fcc Co are shown in Figure 5. It can be seen that below 700K the DLM
results corresponding to different lattice parameters differ by about 30%. The common
feature of the calculated curves is an up-turning just below the Curie temperature. This
again seems to be a consequence of the applied mean field approximation. We can see that
below 700K the computed resistivity curves are by about 50–100% above the experimental
total resistivity, which as should be recalled, contains all possible contributions. In the case
of Co the above-mentioned method to subtract the phonon–electron contribution by using
a fit for the Bloch-Grüneisen formula doesn’t work sufficiently well, because below 600K
a negative value for the (experimental) magnetic resistivity is obtained, see Figure 4, which
of course does not make any sense at all.

Figure 4. (Colour online) Experimental resistivity of Co (red straight curve) and of the Bloch-
Grüneisen (BG) fitting function (black dotted). The difference of the experimental curve and the BG
curve (blue dashed), which should be an approximation to the magnetic part of the resistivity, is
negative below 500K. (The loop around 700K is the sign of an fcc-hcp phase transition.)
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Weiss and Marotta [30], however, did use this method of subtraction to evaluate

the high-temperature (saturated) magnetic resistivity of Co and cited a corresponding

value of 50 m� cm. The main deficiency of this subtraction procedure probably is a

consequence of different phonon–electron contributions in the hcp and fcc phases: from

the slope of the resistivity in the paramagnetic phase with respect to temperature only

conclusions for the fcc phonon–electron contribution can be gained. In addition, the

temperature regime between the Curie temperature and the melting point is possibly

too small to saturate a magnetic resistivity, thus making it difficult to detach a linear

phonon–electron contribution. For this reason in Figure 5 only the experimental total

resistivity is shown.
It is obvious that our DLM results overestimate the magnetic part of the resistivity,

however, we have to stress that they are the very first parameter-free (ab-initio) results ever

obtained for bulk Fe and Co. The deviations from experiment most likely emerge from an

inaccurate determination of the Curie temperature which in turn is a consequence of the

mean-field approximation, although also an inaccurate description of spin–spin

correlations in a mean-field description probably adds to these deviations. It should be

mentioned that in the case of chemically disordered systems more accurate descriptions

can be given by taking into account for example vertex corrections [4]. From Figure 2

of [32] it can be seen that by taking into account vertex corrections the resistivity of non-

magnetic Cuc Zn1�c is reduced by about a factor of 2. The resistivity is even further

reduced by taking into account short-range ordering by means of a non-local CPA [33]

instead of the single-site CPA used in the present paper. Based on the analogy between the

‘chemical’-CPA and the ‘spin-disorder’-CPA, we expect therefore that an inclusion of

vertex corrections and of short-range order will also reduce our results for the

temperature-dependent resistivity.
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Co resistivity
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DLM a=7.04 a.u.
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Ω
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Figure 5. (Colour online) Magnetic resistivity of Co. DLM calculations corresponding to the fcc
lattice parameter 6.82 a.u. (red down triangle), 6.9 a.u. (green diamond) 7.04 a.u. (blue upper
triangle). The experimental [28] result is shown as a full (black) line.
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