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Complex magnetic phase diagram and skyrmion lifetime in an ultrathin
film from atomistic simulations
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We determined the magnetic B-T phase diagram of PdFe bilayer on Ir(111) surface by performing Monte
Carlo and spin dynamics simulations based on an effective classical spin model. The parameters of the spin
model were determined by ab initio methods. At low temperatures we found three types of ordered phases, while
at higher temperatures, below the completely disordered paramagnetic phase, a large region of the phase diagram
is associated with a fluctuation-disordered phase. Within the applied model, this state is characterized by the
presence of skyrmions with finite lifetime. According to the simulations, this lifetime follows the Arrhenius law
as a function of temperature.
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I. INTRODUCTION

Stable localized field configurations in nonlinear field
theory were identified by Skyrme in 1961 [1,2]. It was shown
later that such configurations may form thermodynamically
stable states in magnetic systems [3,4]. These so-called
magnetic skyrmion lattices (SkLs) generally appear due to
the Dzyaloshinsky-Moriya interaction (DMI) [5,6] present in
noncentrosymmetric systems. The identification of the A phase
of the cubic B20 system MnSi as a physical realization of
the skyrmion lattice [7] increased interest in finding further
materials with similar spin configurations. In the last few years,
skyrmion states were also observed experimentally in bulk
systems and thin films of FeGe [8,9] and FeCoSi [10,11]; in
Fe monolayer [12] and PdFe bilayer [13] on Ir(111); in bulk
Cu2OSeO3 [14] and GaV4S8 [15]; and in Pt|Co|Ir multilayer
[16]. Since skyrmions are stable spin configurations which
can be moved around by spin-polarized current, these systems
have promising applications for spintronics devices [17,18].

Previous spin-polarized scanning tunneling microscopy
(SP-STM) experiments performed on PdFe bilayer on Ir(111)
surface [13,19] concentrated on the low-temperature magnetic
behavior of the system, up to T = 8 K. Concomitantly, the
theoretical investigations [18,20,21] determined the parame-
ters of a spin model Hamiltonian and discussed the ground state
of the system as a function of the magnitude of the external
magnetic field B. Three different phases were identified: a
cycloidal spin spiral state (SS) with zero net magnetization for
low fields, a ferromagnetic or field-polarized state (FP) for high
B, and a hexagonal SkL state between them. This is in good
agreement with previous theoretical calculations [4,22,23]
as well as Monte Carlo simulations (MCSs) for similar
anisotropic systems [11,24,25]. The experiments [13,19] also
identified spin spirals, skyrmions, and field-polarized domains,
but the exact phase boundaries were not determined, probably
due to the coexistence of metastable phases.
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The B-T phase diagram of MnSi has been extensively
studied experimentally [7,26–32] and by MCSs [33]. In this
system, the SkL is only stable at finite temperature and
magnetic field, in a small pocket of the phase diagram. At
lower temperatures, this state turns into a conical SS state.
The ordering temperature Tc ≈ 29 K of the SS and SkL states
only weakly depends on the magnetic field. Above Tc, there
is a narrow (1–2 K) transition region, which shows critical
fluctuations based on neutron scattering [34,35], susceptibility,
and specific heat measurements [26–28,36]. The theoretical
description in Refs. [28,29,33] identifies this behavior with
a fluctuation-induced first-order phase transition proposed
by Brazovskiı̆ [37], where the fluctuations are isotropically
strong on a surface of a sphere in momentum space. Earlier
papers suggested [35,38,39] that the transition region may be
attributed to the appearance of stable skyrmions in the system
(even at zero external field), however, these skyrmions do not
show long-range order as evidenced by the neutron-scattering
experiments.

In this paper, we determine the B-T phase diagram of
PdFe bilayer on Ir(111) using Metropolis MCS and stochastic
Landau-Lifshitz-Gilbert spin dynamics [40–43] simulations
(SDSs), based on a classical spin Hamiltonian

H = −1

2

∑
i �=j

SiJij Sj −
∑

i

mSi B, (1)

where Si is the spin unit vector at site i, Jij denotes tensorial
coupling coefficients [44], m is the magnetic moment of the Fe
atoms, and B is the external magnetic field. The parametersJij

and m were determined from ab initio calculations, reported in
detail in Ref. [21] and summarized in Appendix A. Based on
these simulations we demonstrate the presence of the strongly
fluctuating intermediate region between the noncollinear
ordered states and the paramagnetic state, displaying the
characteristics of the fluctuation-disordered regime in MnSi
[28,29]. We calculate the finite lifetime of skyrmions in this
region and stress the importance of different time scales
available in experiments and simulations.
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LEVENTE RÓZSA et al. PHYSICAL REVIEW B 93, 024417 (2016)

II. PHASE DIAGRAM FROM MONTE CARLO
SIMULATIONS

We characterized the different phases in the B-T plane
by the average topological charge Q, the static structure factor
S(q) and the static magnetic susceptibility χ—see Appendixes
B and C for the definitions. The simulations were performed on
an N = 128 × 128 lattice with periodic boundary conditions;
the effect of the boundary conditions on the SS and SkL phases
is discussed in Appendix D. The average topological charge
as a function of B and T is shown in Figs. 1(a) and 1(b), for
simulations performed at a fixed B and by (a) increasing or (b)
decreasing the temperature. The external field was oriented
outwards from the Ir surface, which favors skyrmions with
topological charge Q = −1 in the system as discussed in
Appendix C. At low temperature, we identified three possible
ordered states [4,22,23] in this uniaxial system: cycloidal SS
for B � 1.4 T, hexagonal SkL for 1.4 T � B � 3 T, and FP
state for 3 T � B, with the transition values of B determined
from energy minimization at zero temperature [21]. The
obtained field values are in good agreement with the ones
reported in Ref. [19], although the exact phase boundaries
are not reported there, probably due to the coexistence of the
phases. The diameter d0 of the circle around the skyrmion
where the spins lie in the plane changes from approximately
3 nm at B = 1.4 T to 2 nm at B = 3 T in Ref. [19], while in
our simulations it changed from 5.1 to 3.5 nm at the same field
values. This indicates a relatively good agreement of the ab
initio calculations with the experiments, especially taking into
account the strong dependence of the skyrmion size on the
relaxation of the Fe layer with respect to the top Ir layer [21].

It is apparent that the number of skyrmions in the system
is constant below Tc ≈ 100 K, but depends on the direction
of the temperature sweep as shown in the differences between
Figs. 1(a) and 1(b). The approximately constant value of Tc as a
function of B compares with experimental results on different
systems [7,15,26–28,32]. As the temperature is increased at a
field value corresponding to the SkL, the topological charge
starts fluctuating above Tc during the MCS, while the average
skyrmion number remains the same. This indicates a transition
into a fluctuation-disordered (FD) state [28,29,33], where the
skyrmion lifetime is finite. The average topological charge
gradually approaches zero as the paramagnetic (PM) phase or
the time-reversal-invariant B = 0 T line is approached from
the direction of the FD state. It should be noted that the
transition between the FP and PM phases for B � 5 T is also
indicated in Figs. 1(a) and 1(b) by an increased number of
skyrmions.

Figure 2 shows the noncollinear phases of the system in real
and reciprocal space. The S(q) images are in good agreement
with neutron-scattering experiments [7,10,15,29,34,35,45]
and earlier calculations [33,46]. At finite magnetic fields, there
is always a peak at q = 0, reflecting the finite magnetization
of the system. In the SS phase [Figs. 2(a) and 2(d)], this is
accompanied by two peaks, corresponding to the ordering
related to a single q vector. In the SkL state [Figs. 2(b) and
2(e)], there are six extra peaks corresponding to the hexagonal
lattice structure. Higher harmonics are also visible in these two
phases since neither the SS nor the SkL represents a perfect
sinusoidal modulation (cf. Refs. [15,45,47]). In the FD regime
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FIG. 1. (a), (b) Average topological number Q in the system as a
function of external field and temperature, calculated from MCSs at a
fixed magnetic field for (a) increasing and (b) decreasing temperature.
Below Tc ≈ 100 K, the topological charge did not change during the
simulation time. (c) Phase diagram constructed from the inflection
points of the magnetic susceptibility, the line where the fluctuations
of the system are frozen and the calculated ground states at zero
temperature. Solid lines denote first-order transitions while staggered
lines denote second-order transitions. The shallow regions between
the ordered SS, SkL, and FP phases denote transitions which could
not be resolved by the simulations.

[Figs. 2(c) and 2(f)], the central peak of S(q) is surrounded by
a circle, while the real-space image shows skyrmionlike spin
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FIG. 2. Spin configurations of the different phases in (a)–(c) real space and (d)–(f) reciprocal space [S(q) on logarithmic scale]. In
the real-space figures, red and blue colors denote positive and negative out-of-plane components, respectively. Shown are (a), (d) the SS
(B = 0.6 T, T = 15 K), (b), (e) the SkL (B = 2 T, T = 15 K), and (c), (f) the FD states (B = 2 T, T = 120 K).

configurations with topological charge Q = −1 and similar
radii. Within the applied Heisenberg model, Fig. 2(f) indicates
that the skyrmions still have a typical equilibrium size, but
they no longer form a lattice since they may be created or
destroyed due to the strong thermal fluctuations above Tc (see
also Appendix B).

The B-T phase diagram of the system is shown in Fig. 1(c).
The boundaries of the FD phase at higher temperatures and
magnetic fields were identified from the inflection points of
the χ (T ) and χ (B) curves, respectively [27]. We note that the
FD region in this system is significantly wider (≈150 K) than
in MnSi (1–2 K). Note that a similarly wide transition region
has been identified in MnGe at B = 0 T [48,49], though the
given interpretation was different. The transition between the
FP and the PM phases was obtained similarly from χ (T ),
corresponding to the region with the increased number of
skyrmions at large magnetic field in Figs. 1(a) and 1(b). The
lower boundary of the FD phase Tc was determined by the fact
that the topological charge was no longer constant during the
simulation above that temperature.

As can be inferred from Figs. 1(a) and 1(b), the range of
magnetic field with high skyrmion number is wider in the
simulations performed at decreasing temperature [Fig. 1(b),
1 T � B � 4 T] than in the ones with increasing temperature
[Fig. 1(a), 1.4 T � B � 3 T]. This indicates that in the regions
SS → SkL and FP → SkL in Fig. 1(c), for a fixed value
of external field, the SkL becomes more favorable at higher
temperature compared to either the SS or the FP state. This
observation is in agreement with a simple Clausius-Clapeyron
model of the phase boundary [28],

dT

dB
= −�M

�S
. (2)

Since the SkL has higher entropy than both the SS and the
FP states (stabilizing it in MnSi at finite temperatures [7,28]),

the slope is determined by the magnetization, which increases
by going from the SS through the SkL to the FP state. This leads
to a positive slope of the transition line between the FP and the
SkL states and a negative slope between the SkL and the SS
states, in agreement with our previous assumption. This largely
agrees with the experiments and simulations performed on
GaV4S8 in Ref. [15], but both transition lines have a negative
slope for Fe0.5Co0.5Si thin layers as reported in Ref. [11].
Unfortunately, we cannot determine these lines of first-order
phase transitions from MCSs due to the metastability of all
considered ordered states: the obtained phase will always
strongly depend on the path taken in the B − T space
[33]. We also experienced this effect when the sweeps were
executed by changing the magnetic field at a given temper-
ature. Note that this uncertainty due to metastability also
appears under experimental conditions during field cooling
[10,13,26,50,51].

III. SKYRMION LIFETIME IN THE
FLUCTUATION-DISORDERED STATE

Since it was found that the skyrmion number is fluctuating
in the system above Tc, we performed SDS to calculate the
lifetime of the skyrmions τsk as a function of temperature
at B = 2 T—see Appendix E for the calculation method. As
shown in Fig. 3, τsk follows the Arrhenius law,

τsk = τ0e
�E/kBT , (3)

in agreement with earlier works [51–53]. This is expected
as skyrmion creation is a nucleation process for which
Eq. (3) usually holds. In our model, the skyrmions in
the transition region are metastable in the sense that they
have a finite lifetime because of their finite size, but the
system in this region contains a finite number of skyrmions
in the equilibrium, meaning that they are not necessarily
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FIG. 3. Calculated skyrmion lifetime τsk as a function of temper-
ature implying a good agreement with the Arrhenius law, Eq. (3).
The simulations were performed at B = 2 T with a Gilbert damping
constant α = 0.05. The fitted value of the energy barrier is 1

kB
�E ≈

2200 K.

energetically unfavorable. Actually, the system forms a SkL
ground state at this value of the external field. This must
be contrasted with Refs. [51–53], where the presence of
skyrmions is energetically unfavorable with respect to the
SS state or the FP state. In our calculations, we obtained
1
kB

�E ≈ 2200 K. This can be understood by the following
simple argument: The isotropic exchange interaction between
the nearest neighbors, which is by far the strongest interaction
between the spins, is 1

kB
J1 ≈ 400 K [21]. The skyrmion is

unwound if the downwards pointing spin in the middle of the
skyrmion is rotated in the direction parallel to the external field,
during which rotation it loses the exchange energy stabilizing
it with respect to its nearest neighbors, which are almost
parallel to it in the initial state. This energy difference equals
approximately �E ≈ 6J1, since there are six nearest neigh-
bors in the triangular lattice. We note that in the simulations
performed on a square lattice in Ref. [52] �E ≈ 2J1 was
approximated by taking into account only a single triangle
of spins in the energetical and topological considerations, and
good agreement with the corresponding simulation results was
obtained. Although in bulk systems skyrmions correspond
to lines along the direction of the external field, they are
unwound as a consequence of the appearance of local defects
(monopoles [50]), with an energy barrier of �E ≈ 5.8J1 on
a simple cubic lattice (also six nearest neighbors) reported in
Ref. [53]. Experimentally, Ref. [51] reports 1

kB
�E ≈ 2000 K

for MnSi, where the exchange interactions are probably
weaker than in Pd/Fe/Ir(111), indicated by the lower critical
temperature Tc ≈ 29 K.

In our simulations, we obtained Tc ≈ 100 K, which meant
that the skyrmion number does not fluctuate under the time
scale accessible with SDS, t ≈ 100 ns (see Fig. 3) or for similar
equivalent time scales available in MCS. If Eq. (3) holds over
a much wider range of temperature, it can be extrapolated that
the skyrmion lifetime reaches the 1 s scale around T ′

c ≈ 50 K.
Fluctuations on this time scale are accessible to experimental
methods as has been demonstrated in Ref. [51], and the
experimentally determined critical temperature may be closer
to this value. The generation of skyrmions due to current
injection was examined for Pd/Fe/Ir(111) in Ref. [13], where

it was concluded that the skyrmions are stable against thermal
excitations at T = 4.2 K, in agreement with our simulations.
As a comparison, the ordering temperature reported for the
similar system Fe/Ir(111) in Ref. [54] is Tc ≈ 28 K. Although
this is lower even than the extrapolated value of T ′

c ≈ 50 K,
it is known from ab initio calculations [20,21] that the
exchange interactions determining the ordering temperature
are significantly weaker in the absence of the Pd overlayer.

IV. CONCLUSION

We expect that the B-T phase diagram of PdFe bilayer
on Ir(111) surface determined in this paper is qualitatively
similar for ultrathin film systems within the same symmetry
class, as long as the ground state of the system at B = 0 T
remains the SS state. This similarity was already demonstrated
for bulk systems with different compositions in Refs. [26,55].
Since the interaction parameters can be tuned by changing the
composition as was demonstrated in Ref. [20], it should be
possible to change the skyrmion lifetime within the FD state,
being of crucial importance in technological applications.

We note that after the submission of our work, the paper
Ref. [56] was published, also concerning the finite lifetime
of skyrmions in the Pd/Fe/Ir(111) system. This study focuses
on the FP → SkL region of the phase diagram in Fig. 1(c)
where individual skyrmions are excited in the homogeneous
FP state, while we determined the skyrmion lifetime at the
transition from the SkL to the FD state where there is a large
number of skyrmions in the system, necessitating different
simulation methods (see also Appendix E).
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APPENDIX A: AB INITIO CALCULATIONS

The screened Korringa-Kohn-Rostoker method [57,58] was
applied to calculate the electronic structure of the system
self-consistently, first for the Ir bulk and then for a layered
geometry of nine Ir, one Fe, one Pd and four vacuum (empty
cell) layers on top of the (111) surface of the bulk in fcc growth.
The calculations used the local spin density approximation
with the potential parametrization given in Ref. [59], and the
atomic sphere approximation. We only considered a geometry
optimized by VASP calculations [60–62], corresponding to 5%
relaxation of the Fe layer with respect to the top Ir layer in
Ref. [21]. In good agreement with the values recently reported
in Ref. [18], we obtained a spin magnetic moment of 2.95 μB

for the Fe atoms. The spin-cluster expansion combined with
the relativistic disordered local moment scheme [63] was
used to calculate the coupling coefficients in the spin model,
Eq. (1). The induced moments in the Pd and Ir layers
disappear in the paramagnetic phase modeled by the relativistic
disordered local moments scheme, therefore, in the spin model
we restricted ourselves to the Fe moments. The coupling
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coefficients were calculated for 240 neighbors within the circle
of radius 8a, where a = 2.71 Å is the lattice constant of
the triangular lattice on the Ir(111) surface. For a thorough
discussion of the calculated couplings see Ref. [21].

APPENDIX B: SIMULATION METHODS

We examined the equilibrium properties of the PdFe bilayer
at finite temperatures and external magnetic fields in terms
of classical Monte Carlo simulations using the Metropolis
algorithm. We also performed spin dynamics simulations
based on the numerical solution of the stochastic Landau-
Lifshitz-Gilbert equation [40–43],

dSi

dt
= −γ ′Si × (

Beff
i + Bth

i

)
− γ ′αSi × [

Si × (
Beff

i + Bth
i

)]
. (B1)

Here α denotes the Gilbert damping parameter, γ = ge

2m
the

gyromagnetic ratio (g,e,m are the electronic spin g factor,
charge, and mass, respectively), γ ′ = γ

1+α2 , Beff
i = − 1

m
∂H
∂ Si

is

the effective magnetic field at site i, and Bth
i (t) =

√
2αkBT

mγ
◦

ηi(t) is the thermal noise. The ◦ symbol denotes Stratonovich
stochastic calculus used during the integration of the equation
of motion [64]. The integration was performed using the so-
called semi-implicit B method discussed in Ref. [65], which
conserves the length of the spins.

Generally, the Monte Carlo simulations require less compu-
tation time for thermalization and calculation of averages with
a given precision than the spin dynamics simulations. Spin
dynamics simulations can be used to find the ground state at
zero temperature where the Boltzmann factor in the Monte
Carlo method becomes singular. Even more importantly, the
time step in spin dynamics simulations is trivially scaled to
real time once the constants in Eq. (B1) are known, making
it possible to evaluate the real-time-dependence of quantities
such as the topological charge Q.

The Monte Carlo simulations were performed at a fixed
value of the external magnetic field, while the temperature
was increased or decreased [Figs. 1(a) and 1(b)]. At every
point in the B-T space, the system was thermalized for
2 × 105 Monte Carlo steps, and the averages were obtained
from 106 Monte Carlo steps. For the calculation of the
skyrmion lifetime in Appendix E, we performed spin dynamics
simulations of length 107–108t0 at every temperature, with
the time unit t0 = �

2mRyd = 2.42 × 10−14 s, and the time step
�t = 0.01t0. The simulation length was sufficiently long to
obtain multiple skyrmion creation and annihilation events at
every considered temperature during a single run. The damping
parameter was α = 0.05. The calculations were performed for
an N = 128 × 128 lattice with periodic boundary conditions.

The magnetic phases can be characterized by the static
structure factor,

S(q) =
〈∑

α

∣∣∣∣∣ 1

N

∑
i

eiq Ri Sα
i

∣∣∣∣∣
2〉

, (B2)

corresponding to the intensity profile in elastic neutron-
scattering experiments [66]. S(q) has peaks corresponding
to the reciprocal-lattice vectors of the magnetic order of the

system. Since the characteristic length scale of the considered
noncollinear states (spin spiral, skyrmion lattice) is signifi-
cantly larger than the lattice constant a, these peaks appear
inside the first Brillouin zone of the atomic lattice, close to the
� point. Equation (B2) indicates the S(q) = S(−q) symmetry
of the structure factor; therefore, the peaks at q �= 0 always
appear in pairs, even when the spin structure can be described
by a single wave vector as in the case of the spin spiral phase.
To complement Fig. 2 related to the noncollinear phases, in
Fig. 4 we present the field-polarized and paramagnetic phases
in real and reciprocal space. The field-polarized state Fig. 4(c)
shows no specific feature beyond the peak at q = 0, while
in the paramagnetic phase Fig. 4(d) this is broadened to a
Lorentzian curve.

We note that the neutron-scattering profile in Fig. 2(f)
may also indicate the presence of stable skyrmions with
infinite lifetime which show no long-range order either due
to their thermal motion as in a skyrmion liquid [67] or their
random arrangement as in an amorphous solid [38]. We indeed
identified the same profile below Tc in some parts of the SkL
phase, but this is probably due to the reduced dimensionality
of the system, as an amorphous arrangement of skyrmions
was also identified experimentally in real space in thin films in
Refs. [11,13]. We did not partition the skyrmion lattice phase
into further subphases since the mentioned neutron-scattering
profile is not accompanied by the variation of Q during the
simulation, unlike in the fluctuation-disordered state. We also
point out that in Ref. [38], the amorphous skyrmion state
at B = 0 T was explained within a model that accounts for
longitudinal spin fluctuations close to the critical temperature;
in the Heisenberg model with fixed moment length, we
only identified the spin spiral, fluctuation-disordered, and
paramagnetic phases for zero external field.

The static magnetic susceptibility

χ = 1

kBT
(〈M2〉 − 〈M〉2), (B3)

with

M = 1

N

∑
i

Si , (B4)

is appropriate for finding the transition points between the
different phases [27]. At a first-order transition it generally
exhibits a finite jump or fall, while second-order transition
points correspond to inflection points in χ as a function
of temperature. One example is shown in Fig. 5 at B =
0 T, showing a similarity to the curve calculated from the
Brazovskiı̆ model in Ref. [29]. The inflection points were
determined by fitting a polynomial on the χ (T ) and χ (B)
curves. Although the calculated inflection points give a good
first approximation of the phase-transition lines as shown
in this paper, the detailed comparison of several different
thermodynamical quantities should improve the accuracy of
phase transition lines as was demonstrated in Refs. [27,31] for
MnSi.

APPENDIX C: TOPOLOGICAL CHARGE

The skyrmion number is connected to the topolog-
ical charge of the spin system. In field theory, this
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FIG. 4. Spin configurations of the (a), (c) field-polarized (B = 3.2 T, T = 15 K) and the (b), (d) paramagnetic (B = 2 T, T = 310 K)
phases in real space and reciprocal space [S(q) on logarithmic scale].

is given by [68]

Q = 1

4π

∫
S(∂x S × ∂y S)dxdy, (C1)

where S is a vector field normalized to 1. If one introduces the
usual polar and azimuthal angles

S(x,y) =

⎡
⎢⎣

sin ϑ(x,y) cos ϕ(x,y)

sin ϑ(x,y) sin ϕ(x,y)

cos ϑ(x,y)

⎤
⎥⎦, (C2)
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FIG. 5. Static magnetic susceptibility χ as a function of temper-
ature for B = 0 T. Horizontal lines denote the phase boundaries of
the fluctuation-disordered phase, corresponding to a singularity (solid
line) and an inflection point (staggered line) in χ .

Eq. (C1) transforms into

Q = 1

4π

∫
sin ϑ(x,y)

∂(ϑ,ϕ)

∂(x,y)
dxdy, (C3)

where ∂(ϑ,ϕ)
∂(x,y) is the signed Jacobian determinant. This demon-

strates that Q counts how many times S winds around the unit
sphere.

The correct way of generalizing this quantity to the lattice
model discussed in this paper is given in Ref. [69] (see
also Ref. [52]). The lattice must be partitioned into nearest-
neighbor triangles of spins, and one must sum up the signed
areas of the spherical triangles defined by the Si vectors. If the
vectors are denoted by S1,S2,S3 following a counterclockwise
rotation on the lattice, the sign of the area is the same
as the sign of the product S1(S2 × S3). If the calculations
are performed for a lattice with periodic boundary conditions,
one will always return to the same point in the lattice during the
calculation, and the calculated spherical area will always be
an integer multiple Q of the area of the whole sphere, 4π . By
calculating the skyrmion number this way, the fluctuations in
the topological charge at finite temperature will always signal
actual topological changes, rather than discretization errors,
making it possible to calculate the skyrmion lifetime.

The connection between the topological charge Q and the
skyrmion number is demonstrated in Fig. 6. First, Eq. (C1)
changes sign under time reversal, therefore the upwards
and downwards pointing skyrmions have opposite charge.
However, they also have an opposite finite magnetization
perpendicular to the plane; therefore, the external field B

will break the energy degeneracy between them, leading to
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FIG. 6. Localized spin configurations with different topological
charges: (a) downwards pointing skyrmion (Q = −1), (b) upwards
pointing skyrmion (Q = 1), and (c) downwards pointing anti-
skyrmion (Q = 1). The direction refers to the fact that the spin at
the center of the skyrmion is pointing towards (down) or outwards
from (up) the Ir surface. For B pointing upwards, only downwards
pointing skyrmions are energetically favorable.

the disappearance of the upwards pointing skyrmions if the
field is pointing upwards, that is outwards from the Ir surface
for which direction of B the simulations were carried out.
Second, downwards pointing antiskyrmions also have opposite
charge to the skyrmions, and they have the same energy
due to the isotropic Heisenberg coupling and the Zeeman
term [70]. The energy difference between the skyrmions
and antiskyrmions is caused by the Dzyaloshinsky-Moriya
interaction. For small wave vectors, the isotropic exchange and
the Dzyaloshinsky-Moriya interaction energy contributions
are quadratic and linear in the wave vector, respectively [71].
Energy minimization yields that the characteristic scale of
spin spirals and skyrmion lattices in reciprocal space is given
by qa ≈ D

J
, while the energy gain per spin is approximately

D2/J , where D and J are the effective Dzyaloshinsky-Moriya
and isotropic exchange interactions [22]. The noncollinear spin
structures only gain this energy if they follow a rotational
sense specified by the Dzyaloshinsky-Moriya interaction. As
shown in Figs. 6(a) and 6(b), the rotational sense of the
spins is the same for every cross section of a skyrmion, so
skyrmions gain energy due to the chiral interaction. However,
the rotational sense in antiskyrmions in Fig. 6(c) may be
either left-handed or right-handed depending on the chosen
cross section, meaning that they do not gain energy from
the Dzyaloshinsky-Moriya interaction. Similarly, the energy
gain of the skyrmion compared to the field-polarized state
is also due to the Dzyaloshinsky-Moriya interaction, but
since the field-polarized state has a higher magnetization,
there is a transition between the two states at approximately
mB ≈ D2/J [4]. This means that antiskyrmions are always
energetically unfavorable, and upwards pointing skyrmions are
also unfavorable in the case of a large enough external field
(B � 1 T), meaning that in this region, Q may be identified
with the number of downwards pointing skyrmions which form
the hexagonal skyrmion lattice state.

APPENDIX D: EFFECT OF PERIODIC
BOUNDARY CONDITIONS

We performed the simulations on an N = 128 × 128 lattice
with periodic boundary conditions, which determines which
values of the wave vector q are allowed in the system. The
wavelength of the spin spiral (λ = 6.6 nm) was determined
from a mean-field model based on calculating the Fourier
transform J (q) of the coupling coefficients in Eq. (1) [21].
Since the (111) surface of the Ir fcc lattice has threefold

rotational symmetry, the maximal eigenvalues of J (q) are
almost isotropic for small wave vectors. This degeneracy
could only be broken by higher-order anisotropy terms in the
Hamiltonian, which we omitted from the calculations; and
the above-mentioned boundary conditions, which discretize
the values of q and fix the direction of the spin spiral
wave vector. The lattice constant of the skyrmion lattice was
dc = 8.7 nm, corresponding to 32 Ir(111) lattice constants or
16 skyrmions in the 128 × 128 lattice. Note that dc is the
distance between the skyrmion cores, which is different from
the skyrmion core diameter d0 [23].

Due to the periodic boundary conditions, λ and dc could
only change through topological transitions, that is an addition
or removal of a 360◦ domain wall in a spin spiral or a skyrmion.
It is known from micromagnetic calculations [4,22,72] that
both λ and dc depend on the external magnetic field at zero
temperature. However, this dependence is strongest close to a
critical field value where the spin spiral and skyrmion lattice
states become metastable compared to the field-polarized state
and break into 360◦ domain walls and isolated skyrmions,
respectively. The spin spiral state was not examined close to
this critical field since it becomes metastable compared to the
skyrmion lattice at a significantly lower field value [22]. For
the skyrmion lattice, we performed calculations for different
dc values close to the transition into the field-polarized state
(B ≈ 3 T at T = 0 K). For B = 3 T, the lattice with dc =
8.7 nm had the lowest energy out of the ones commensurate
with the N = 128 × 128 lattice; while for B = 3.2 T, even
the system with a single skyrmion (dc = 34.8 nm) had higher
energy than the field-polarized state. This leads us to the
conclusion that the divergence of dc happens in a very short
interval of magnetic field, in agreement with Ref. [22]. This
is probably because the divergence of dc is a consequence
of the repulsive interaction between the skyrmions, but this
interaction decreases exponentially with the distance between
the skyrmions outside the core areas [73].

However, using free boundary conditions would not solve
the problem with the relaxation of λ and dc since the spins
at the edges form configurations which also interact with
the spin spiral and the skyrmion lattice; see, e.g., Ref. [74].
The topological charge is also no longer an integer for
free boundaries, which complicates the determination of
the skyrmion lifetime at finite temperature. Therefore, we
conclude that the periodic boundary conditions are probably
more appropriate for the simulation of a homogeneous system
considered in this paper, while free boundary conditions are
preferable in constrained geometries [74,75].

APPENDIX E: CALCULATING THE
SKYRMION LIFETIME

Since we can only measure the topological charge Q of the
whole system, the skyrmion lifetime can be calculated from the
Q-t diagrams, see Fig. 7, under some simplifying assumptions.
First, we suppose that the increase and decrease of Q is only
due to the creation and annihilation of downwards pointing
skyrmions, while the presence of upwards pointing skyrmions
or antiskyrmions is excluded. This is largely justified at B =
2 T by energy considerations given in Appendix C. Even if
such structures with opposite topological charge would form in
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FIG. 7. Sample run for determining the skyrmion lifetime show-
ing the topological number Q as a function of time. The parameters
are B = 2 T, T = 110 K, N = 128 × 128.

the system, we expect that the energy barrier between the field-
polarized state and the skyrmion will mainly depend on the
isotropic exchange interactions in the system [22,52], which
makes no difference between skyrmions and antiskyrmions
with opposite topological charges.

Second, it is impossible to directly follow the creation and
annihilation of a single skyrmion if only the net topological
charge is calculated. As a seemingly solid approximation we
may assume that the time evolution of the skyrmion density
per spin nsk follows the master equation

dnsk

dt
= 1

τcr
− nsk

1

τsk
, (E1)

where 1
τcr

is the creation rate of skyrmions due to thermal
fluctuations and τsk is the skyrmion lifetime. In the stationary
case, this simplifies to

τsk = τcr〈nsk〉, (E2)

where τcr and 〈nsk〉 are directly measurable by calculating
the average time between skyrmion creation events and the
average skyrmion number, respectively. We note that none
of the parameters in Eq. (E2) depend on the lattice size.
During the simulations, we can calculate the average number
of skyrmions instead of the density, which is expected to
scale linearly with the number of spins N . However, the
average time between skyrmion creation events is inversely
proportional to N because the temperature uniformly excites
the spins in the simulated area. Indeed, we found that τsk

calculated as the product of the average time between skyrmion
creation events and the average skyrmion number was the same
within statistical error for the lattice sizes N = 128 × 128 and
N = 64 × 64.

We note that although the topological charge is quantized,
the inflation and shrinking of the skyrmion core is not instan-
taneous but follows a certain time evolution [76], similarly to
the formation and absorption of bubbles in boiling liquids.
Therefore, it is not likely that the skyrmion lifetime, that
is the time difference between the creation and annihilation
of the same skyrmion, follows exponential distribution as
indicated in Eq. (E1), since it is generally used to describe
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FIG. 8. Distribution of time t elapsed between skyrmion creation
events. The time unit is t0 = �

2mRyd = 2.42 × 10−14 s. As indicated by

the fit, the elapsed time follows exponential distribution e−t/τcr . The
parameters are B = 2 T, T = 135 K, N = 64 × 64.

the distribution of instantaneous events such as the detection of
particles in a detector or scattering in a solid. On the other hand,
the skyrmion creation events, that is the jumps in Q(t), are
instantaneous, meaning that they likely follow a homogeneous
Poisson point process. The distribution between neighboring
points in the Poisson process is exponential, and Fig. 8
indicates that the average time between skyrmion creation
events is in agreement with this distribution. Fortunately, it
is known from the theory of queueing processes that even if
the skyrmion lifetime does not follow exponential distribution
and therefore Eq. (E1) does not hold, the connection between
the expectation values in Eq. (E2) holds as long as the skyrmion
creation process is Markovian (a homogeneous Poisson point
process), and Eq. (E2) is sufficient for the calculation of
the average lifetime. For details about M/G/∞ queueing
processes see Ref. [77].

We emphasize that considering an ensemble of skyrmions
based on Eq. (E2) is unavoidable in the fluctuation-disordered
state where the average distance between the skyrmions is
small. In some recent publications [52,56], the skyrmion life-
time was calculated by taking into account a single metastable
skyrmion on a ferromagnetic background. Although in this
limit the average distance between skyrmions should be
considerably larger than in the fluctuation-disordered state,
it was shown in Ref. [56] that the calculated skyrmion lifetime
depends on the size of the simulated area, and multiple
skyrmions may be present simultaneously if the system size
is increased. As was discussed after Eq. (E2), we did not
find such a dependence of the skyrmion lifetime on the
system size. Furthermore, the presence of an ensemble of
skyrmions opens different types of processes for a change
in the topological charge beyond the usual nucleation and
annihilation on a homogeneous background. These processes
include the merging of two skyrmions into one, and the
splitting of a single skyrmion into two. Similar merging effects
have been discussed in Ref. [50] for a three-dimensional
system, when the skyrmion lattice transforms into the spin
spiral state as the external magnetic field is decreased.
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Finally, we note that we only performed the simulations
for a fixed value of the damping parameter, α = 0.05. It
is known that the skyrmion lifetime should depend on
the damping [76], but the energy barrier �E in Eq. (3)
between the skyrmion and the field-polarized state should

not, as it is related to the interactions in the spin model.
Due to the exponential dependence on �E, its value is
significantly more important during the determination of
lifetime and critical temperature than the value of the
prefactor τ0.
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[45] T. Adams, S. Mühlbauer, C. Pfleiderer, F. Jonietz, A. Bauer,

A. Neubauer, R. Georgii, P. Böni, U. Keiderling, K.
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