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Abstract
A new computational scheme is presented based on a combination of the conjugate gradient and
the Newton–Raphson method to self-consistently minimize the energy within local spin-density
functional theory, thus to identify the ground state magnetic order of a finite cluster of atoms.
The applicability of the new ab initio optimization method is demonstrated for Fe chains
deposited on different metallic substrates. The optimized magnetic ground states of the Fe
chains on Rh(111) are analyzed in details and a good comparison is found with those obtained
from an extended Heisenberg model containing first principles based interaction parameters.
Moreover, the effect of the different bilinear spin–spin interactions in the formation of the
magnetic ground states is monitored. In case of Fe chains on Nb(110) spin-spiral configurations
with opposite rotational sense are found as compared to previous spin-model results which hints
on the importance of higher order chiral interactions. The wavelength of the spin-spiral states of
Fe chains on Re(0001) was obtained in good agreement with scanning tunneling microscopy
experiments.

Keywords: magnetic nanoclusters, ab initio, magnetic ground state

(Some figures may appear in colour only in the online journal)

1. Introduction

The rapid development of scanning tunneling microscopy
(STM) allows to create finite clusters of magnetic atoms on
solid surfaces with atomic precision [1, 2]. Magnetic chains
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on top of a superconducting surface has attracted consider-
able interest during the past years due to the challenge of find-
ing Majorana bound states that may open a new prospect in
quantum computation [3–7]. The magnetic structure of the
chains has crucial role in the emergence of topological super-
conductivity. A recent theoretical and experimental review on
the physics of atomic spin chains deposited on surfaces is
provided in [8].

Complexmagnetic systems are often described in terms of a
generalized Heisenberg model, where the interaction between
spins si and sj at sites i and j is ascribed to a tensorial exchange
coupling Jij. This exchange coupling can further be split into
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three terms [9]: the isotropic exchange, the symmetric aniso-
tropic exchange and the antisymmetric anisotropic exchange
or the Dzyaloshinskii–Moriya interaction (DMI) [10, 11]. Of
particular interest is the DMI, which can lead to the forma-
tion of spin-spiral ground states [12–15] or, in the presence of
external magnetic field, to the emergence of magnetic skyrmi-
ons in chiral bulk magnets [16–18] and in ultrathin mag-
netic films [19–22]. Although the bilinear Heisenberg model
provides a sufficient description of a large number of mag-
netic materials, it has been reported that higher order spin–spin
interactions are necessary to account for the complex mag-
netic ordering in several systems [23–27], including atomic
spin chains in proximity of superconductors [28].

In order to avoid using spin models the magnetic ground
state of nanostructures can directly be determined from
first principles calculations based on density functional the-
ory. The real-space linear muffin-tin orbital method in the
atomic sphere approximation (ASA) extended to non-collinear
magnetic systems has been successfully used to obtain the
magnetic configurations of supported nanoclusters [29–31].
Including the effects of spin–orbit coupling, this parameter-
free method was applied to explore the complex magnetic
ground state of Mn nanowires on Ag(111) and Au(111) [32],
as well as of Cr nano-islands on Pd(111) [33]. Using the con-
strained local moment method employed with the multiple
scattering Green’s function technique [34, 35] the existence of
a canted magnetic state of a Co chain along a Pt(111) surface
step edge [36] was demonstrated from first principles in good
agreement with experiment [37]. Deriving explicit expressions
for the torque acting on the magnetic moments, the forma-
tion of a domain wall through a nano-contact has been studied
within an ab-initio framework [38]. Using the same approach
for the torque and by solving the stochastic LLG equations, it
became possible to perform finite temperature spin-dynamics
simulations for monatomic Co chains on top of Au(001) [39].

In this work a modified version of the conjugate gradi-
ent and Newton–Raphson methods used in [38] is proposed
to find the magnetic ground state of deposited clusters from
first principles. First the numerical method will be described
in details, then it will be applied to Fe chains deposited on
the (111) surface of face centered cubic (fcc) Rh. The mag-
netic ground states derived from the new ab-initio optimiza-
tion technique are compared to those obtained from spin mod-
els parametrized from first principles and the effect of the
different kind of spin–spin interactions is discussed. Further
applications are presented for Fe chains deposited on the (110)
surface of body-centered cubic (bcc) Nb and on the (0001)
surface of hexagonal closed pack (hcp) Re, where spin-spiral
ground states are found in agreement with previous theoretical
works [25, 40] and experiment [4].

2. Methods

2.1. Embedded cluster calculations

The electronic structure of the host system, composed of
a semi-infinite substrate, a finite number of substrate and
empty sphere layers describing the surface region and a

semi-infinite vacuum, has been calculated in the terms of the
fully relativistic screened Korringa–Kohn–Rostoker (SKKR)
method [41]. Then the Green’s function embedding technique
based on multiple scattering theory [42] has been applied to
determine the electronic and magnetic properties of the finite
atomic clusters. The charge and spin density have been relaxed
not only for the magnetic atoms forming the chain but also
in the first shell of atomic cells around them in the substrate
and in the surrounding vacuum. For the construction of the
effective potentials, Veff,i(r) and exchange-correlation fields,
Bxc,i(r), where i labels atomic positions, the ASA has been
applied. The exchange-correlation field in the atomic sphere
corresponding to site i is then given by Bxc,i(r) = Bxc,i(r)si,
where si is a unit vector representing the direction of Bxc,i. An
angular momentum cut-off ℓmax = 3 was used for the partial
waves in multiple scattering theory. The details of the geo-
metry used in the calculations will be specified for each system
under consideration.

2.2. The modified conjugate gradient method

In order to find the magnetic configuration of a cluster of
atoms, a simultaneous iteration of the direction of the mag-
netization, of the effective potential and of the exchange-
correlation field works flawlessly in case of a simple systems.
However, in case of complex magnetic structures, e.g. for
frustrated antiferromagnetic (AFM) or for spin-spiral ground
states, the convergence of the above scheme might be less sat-
isfactory. An estimate of the first and second order change of
the energy of the system with respect to the change of the ori-
entation of the magnetization can help to find the magnetic
ground state configuration.

In the spirit the magnetic force theorem [43], Veff,i(r) and
Bxc,i(r) are kept fixed for small changes of the magnetic ori-
entations. This implies that the number of the electrons in
the finite cluster is not preserved, therefore, the variation of
the energy of the system at zero temperature is replaced by
the variation of the grand potential, Ω = E − εFN, where the
energy E of the system is approximated by the single particle
(band) energy,

∆Ω =

εFˆ

−∞

∆n(ε)(ε − εF)dε = −
εFˆ

−∞

∆N(ε)dε, (1)

with εF and N(ε) =
´ ε
−∞ n(ε ′)dε ′ being the Fermi energy

and the integrated density of states, respectively. The main
advantage of the above formula is that within the multiple
scattering theory it can easily be calculated using Lloyd’s
formula [9, 44].

It is straightforward to derive a formula for the first order
change of the grand potential when the exchange correlation
field in an atomic sphere at site i is rotated around a unit vector
ni with an angle ∆φi [9]:

∆Ω
(1)
i = Ti∆φi, (2)
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where the torque Ti is defined as

Ti =
1
π

εFˆ

−∞

ImTr

(
i
ℏ
[
J, t−1

i

]
τii

)
dε, (3)

and∆φi ≡ ni∆φi, J = L + S is the matrix of the total angu-
lar momentum operator, ti is the single-site scattering mat-
rix and τ ii is the site-diagonal matrix block of the scattering
path operator (see [42]). Note that these matrices are defined
in orbital momentum and spin space.

First, Veff,i and Bxc,i are kept fixed and we search for the dir-
ections of the exchange-correlation field si at each site corres-
ponding to the lowest grand potential. Once the restricted min-
imum ofΩ is found, the set of si is kept frozen, while Veff,i and
Bxc,i are iterated according to the local spin-density approxim-
ation. The whole procedure is repeated until the error of the
effective potential and the exchange correlation field as well
as the torque on each site become smaller than a predefined
value.

During the optimization si is moving on the surface of a unit
sphere. The minimum of the grand potential should be found
on the direct product of N unit spheres, where N is the number
of atoms included in the optimization process, thus the stand-
ard optimization methods working in Euclidean space does
not apply. An extension of the conjugate gradient algorithm
to Riemann manifolds has been used [45–47] as briefly sum-
marized in the following. Let t(k)i be the torque vector which
specifies the rotation for site i at the kth iteration step. At the
beginning of the iteration procedure t(0)i is set equal toTi given
by equation (3). In the first part of an iteration step we look for
the minimum of the grand potential with respect to α,

Ω(α) = Ω
{
O
(
n(k)i ,αt(k)i

)
si
}
, (4)

where t(k)i =
∣∣∣t(k)i ∣∣∣, n(k)i = t(k)i /t(k)i andO(n,φ) denotes a rota-

tion around vector n by an angle of φ. In this procedure the
classical spin vector si is rotated around the local torque t

(k)
i by

an angle which is given as the product of a global parameter
α and the magnitude t(k)i of the local torque. The vector t(k)i
plays the same role as the search direction in a conventional
conjugate gradient method. Once the minimumwith respect to
α has been found, we calculate the torque using equation (3)
in the new configuration and define the effective torque for the
next iteration step,

t(k+1)
i = T(k+1)

i + βit
(k)
i , (5)

with the multipliers βi from the Polak–Ribière formula [48],

βi =

(
T(k+1)
i − T(k)

i

)
T(k+1)
i

T(k+1)
i T(k)

i

. (6)

The iterations are repeated until satisfactory convergence is
achieved.

In order to further increase the efficiency of the optimizing
procedure, we applied a Newton–Raphson method adopted to

the Riemann manifold. The second order change of the grand
potential necessary for the Newton–Raphson method can also
be calculated using the Lloyd’s formula [9],

∆Ω
(2)
ij =

1
2
∆φiHij∆φj, (7)

with the 3 × 3 matrix,

Hij =
1
π

εFˆ

−∞

1
ℏ2

ImTr
([

J, t−1
i

]
τij

[
J, t−1

j

]
τji

−δij
{[
J,
[
J, t−1

i

]]}
τii

)
dε. (8)

The change of the grand potential is then given up to second
order by

∆Ω =
∑
i

∆Ω
(1)
i +

∑
ij

∆Ω
(2)
ij

=
∑
i

Ti∆φi +
1
2

∑
ij

∆φiHij∆φj. (9)

The component of the total angular momentum operator par-
allel to si commutes with the single site scattering matrix ti,
[siJ, ti] = 0. Consequently the following relationships apply,

Tisi = 0, (10)

Hijsj = 0. (11)

This implies that a set of rotation {∆φi} lowering the grand
potential must be constrained to the manifold perpendicular to
{si}. For that reason two auxiliary unit vectors per site, e1i and
e2i, are introduced which together with si form a right-handed
orthonormal system as depicted in figure 1 and the rotations
are chosen as

∆φi = ∆φ1ie1i + ∆φ2ie2i. (12)

Varying the change of the grand potential (9) with respect
to ∆φγi (γ = 1,2), we obtain the Newton equations,

Tγi +
∑
γ ′j

Hγi,γ ′j∆φγ ′j ≡ eγiTi +
∑
γ ′j

eγiHijeγ ′j∆φγ ′j = 0.

(13)

Inverting the Hessian, H = {Hγi,γ ′j}, a new set of ∆φγi is
calculated,

∆φγi = −
∑
γ ′j

H−1
γi,γ ′jTγ ′j, (14)

thus a new spin-configuration is generated. The Newton–
Raphson method converges to the local minimum if the H
is positive definite. In our implementation, at the end of
every line search of the conjugate gradient procedure the Hes-
sian was checked and, if all the eigenvalues were positive,
the optimization was continued using the Newton–Raphson
method. Beyond the stable spin-moments of the iron atoms,
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Figure 1. Rotation of the magnetization vector si around the
orthogonal directions e1i and e2i by angles ∆φ1i and∆φ2i,
respectively. The new magnetization direction is denoted by s ′i .

we also included the induced moments of the non-magnetic
host atoms in the minimization of the grand potential. Nev-
ertheless, if the induced moment on a non-magnetic site was
smaller than a threshold value (chosen as 0.01µB), the direc-
tion of the exchange field at this site was set in the next iteration
parallel to the direction of the magnetization prescribed by the
local spin-density approximation.

In all cases the optimization procedure has been done until
the relative error of the effective potential and of the mag-
nitude of the exchange-correlation field became smaller than
10−9 and 10−7, respectively and the overall torque on the

sites, T =

√∑
i

T2i , decreased below 10−2mRyd. In a pre-

vious study a domain wall through a nano-contact has been
investigated [38], where the robustness of the magnetic struc-
ture permitted the application of the Newton–Raphson method
only. Namely, due to the fixed magnetic boundary conditions
the energy of the system was in the quadratic region and
all the eigenvalues of the Hessian defined in equation (13)
were positive guaranteeing the convergence of the procedure.
In the present work we study magnetic chains deposited on
non-magnetic substrates. In this case there is no constraint
on the magnetic configuration, therefore, at the beginning of
the minimum search the system can be far from the quadratic
region often leading to negative eigenvalues of the Hessian.
Initializing the optimization by the conjugate gradient method
drives the system towards the region where the faster Newton–
Raphson method is applicable.

2.3. Spin model calculations

We compared the results of the first principles optimization
process to those obtained from the following spin model,

H = −1
2

∑
ij

siJijsj +
∑
i

siKisi, (15)

where si and sj represent the direction of the magnetic
moments at site i and j of the magnetic cluster,Ki is the onsite

anisotropy tensor and Jij is a 3 × 3 matrix, called the tensorial
exchange coupling. Jij can be decomposed as [9],

Jij =
1
3
Tr

(
Jij
)
I +

1
2

(
Jij − JTij

)
+

1
2

(
Jij + JTij −

2
3
Tr

(
Jij
)
I
)
,

(16)

where Jij = 1
3Tr(Jij) is the isotropic Heisenberg exchange

coupling, si 12
(
Jij − JTij

)
sj = Dij (si × sj) is the antisymmet-

ric DMI, and the third, symmetric traceless part of Jij stands
for the pseudo-dipolar anisotropy. These parameters were
obtained using the spin cluster expansion [49–52], where the
self-consistent effective potentials and exchange-correlation
fields of the magnetic cluster and the neighboring host region
were employed.

The ground state of the spin model was determined by con-
secutive Metropolis and Landau–Lifshitz–Gilbert (LLG) spin
dynamics simulations [39]. For each system ten simulations
were performed from independently chosen random initial
configurations. For the considered systems we found that all
the ten simulations ended in the same spin-configuration (or to
its time-reversed counterpart) within a relative error of 10−6.

3. Results

3.1. Fe/Rh(111)

Rh crystallizes in fcc structure with a lattice constant of
aRh = 3.803Å implying an inter-layer distance of 2.196Å
between the Rh(111) planes. For the vertical position of the
Fe chains with respect to the uppermost Rh monolayer we
used the interlayer distance between an Fe monolayer and the
top Rhmonolayer of the Rh(111) substrate, dFe−Rh = 2.057Å
(corresponding to an inward relaxation of−7.3%), reported by
Lehnert et al [53]. The relaxation of the interlayer distances
between the Rh layers found to be 1% or less are neglected in
our calculations for simplicity, see figure 2. It should be noted
that in [53] the hcp stacking position of the Fe monolayer has
been found slightly lower in energy than the fcc stacking. In
[54] it was demonstrated that the magnetocrystalline aniso-
tropy energy (MAE) is remarkably sensitive to the stacking
position of Fe and Co adatoms on Rh(111) and Pd(111) sur-
faces. Since the MAE and, in general, relativistic effects are
of great importance in determining the magnetic state of sup-
ported nanoclusters, we investigated the magnetic ground state
of monatomic Fe chains occupying both fcc and hcp stacking
positions above the topmost Rh monolayer.

The electronic structure of the host Rh(111) surface was
calculated using the SKKR method [41]. The Rh(111) surface
was modeled by eight monolayers of Rh and four monolay-
ers of empty spheres (vacuum) between semi-infinite bulk Rh
and semi-infinite vacuum regions. The vertical geometry of
the layers was identical with that shown in figure 2, the Fe
monolayer being replaced by a layer of empty spheres. The
iron chains were then embedded into this vacuum layer by
means of the embedding technique based on the KKR Green’s
function method [42] and self-consistent calculations of the
magnetic ground states have been performed as described in
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Figure 2. Sketch of the simplified layer geometry for embedded Fe chains on Rh(111) substrate. The Rh and Fe atoms, as well as the empty
spheres in the vacuum region are shown with blue, red and green spheres, respectively.

Figure 3. Magnetic ground states of monatomic chains of 4, 5, 6 and 7 Fe atoms on a Rh(111) surface with fcc stacking obtained from
ab-initio optimization. The x, y and z axes correspond to the [110], [112] and [111] directions, respectively red spheres represent the Fe
atoms, while the blue ones represent atoms in the underlying Rh layer. The red vectors show the direction of the spin magnetic moments of
the Fe atoms, while their magnitude in µB is written inside the red spheres. The panels on the right show the normal-to-chain views of the
spin-configurations of the four considered chains in the same order as in the left panels.

section 2. We studied close-packed chains of 4, 5, 6 and 7
Fe atoms deposited in the [110] direction, where the Fe atoms
occupied either the fcc or the hcp hollow positions above the
Rh(111) surface.

In figure 3 we present the ground state magnetic config-
uration for the considered Fe chains with fcc stacking. The
magnitudes of the Fe magnetic moments inside the chain show
slight oscillations in the range of 3.17–3.18µB, while the edge
atoms exhibit a modestly enhanced moment of 3.26–3.27µB

which can be attributed to the reduced coordination of the edge
Fe atoms. The magnitude of the induced magnetic moments of
the Rh atoms nearest the Fe atoms (not displayed in figure 3)
is around 0.2µB.

Before discussing the ground-state spin-configurations dis-
played in figure 3 we note that the point group of the chains
contains two operations: the identity and a mirror plane per-
pendicular to the chain. In addition, time reversal that turns
around the spin vectors is also a symmetry operation of the
system. Accordingly, there exist two kinds of ground-state
spin-configurations being invariant either under the mirror
transformation or under simultaneous action of mirror trans-
formation and time reversal. It then follows that the spin vec-
tors can transform either as axial or polar vectors under the
mirror plane operation.

As can be seen from figure 3, either of the above sym-
metry of the magnetic configurations can be obtained from
the ab-initio optimization depending on the length of the
chains: the 4- and 7-atom-long chains show polar vector sym-
metry, while the magnetic moments in the 5- and 6-atom-
long chains behave as axial vectors. Inferring the ground-state

spin-configurations, it is tempting that the building blocks of
these configurations are pairs of Fe spins being aligned closely
parallel to each other (↑↑), while these dimers seem to be
coupled antiparallel to each other (↑↑↓↓). This structure is par-
ticularly obvious for the chains containing even number of Fe
atoms, as what follows referred to as even chains. In case of
chains containing odd number of Fe atoms (odd chains) the
alternation of ↑↑ and ↓↓ dimers is necessarily broken, which
gives rise to strongly noncollinear spin-configurations. This
might be associated with the fact that the central spin in an
odd chain must be aligned either normal to the chain (polar
vector symmetry) or parallel to the chain (axial vector sym-
metry). Apparently, noncollinearity of the spins is present in
the even chains too. Furthermore, all the ground state spin-
configurations are coplanar with the planes tilted to the z axis
by roughly the same angle: 22◦ for the 4-atom-long chain, and
around 27◦ for the longer chains.

As what follows we make an attempt to analyze the main
features of the ground-state spin configurations for the differ-
ent chains in terms of the bilinear spin model (equation (15)).
The leading terms in the spin model are the isotropic exchange
interactions. In table 1 we present the nearest neighbor
(NN) and next nearest neighbor (NNN) isotropic interactions
between the Fe atoms. Apparently, the NN and NNN isotropic
interactions are ferromagnetic (FM) and AFM, respectively.
These interactions are consistent with the alternating ↑↑↓↓
structure seen as the dominant feature of the even chains. For
n = 6 the large FM coupling between the inner atoms, J34, fur-
ther stabilizes this spin structure. In the case of odd number of
atoms this double-pair-wise AFM configuration is obviously

5
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Table 1. Nearest neighbor and next nearest neighbor isotropic
exchange interactions Jij (in mRy) between sites i and j in
fcc-stacked monatomic chains of n Fe atoms. Label 1 denotes atoms
at the left edge of the chain. Only the independent interactions are
shown.

i–j n = 4 n = 5 n = 6 n = 7

1–2 0.604 0.572 0.686 0.605
1–3 −0.562 −0.624 −0.614 −0.599
2–3 0.114 0.331 0.558 0.322
2–4 −0.441 −0.456 −0.406
3–4 1.181 0.227
3–5 −0.420

broken. It should be noted that a ↑↑↓↓ double-row-wise AFM
structure has been theoretically predicted [55] and experiment-
ally observed [56] in an Fe monolayer on Rh(111). While the
emergence of such a spin-structure in a monolayer requires the
presence of higher-order (in particular, three-site four-spin)
interactions [56], for a chain of finite length it can be stabilized
by the inhomogeneous bilinear isotropic interactions only.

For the cases of the 4-atom-long and 5-atom-long chains
we demonstrate the effect of different kinds of exchange inter-
actions in forming the magnetic ground state. For this reason,
we consecutively considered three sets of spin-model paramet-
ers: (a) isotropic interactions and on-site anisotropy matrices,
(b) the previous spin-model extended by DMI and (c) the
spin-model with full tensorial interactions (15). The spin-
configurations obtained by spin-dynamic simulations using
these spin-models are presented in figure 4.

In case of the 4-atom-long chain, see figure 4 left panel,
when only isotropic exchange interactions and on-site aniso-
tropies are present, the simulations resulted in to a nearly col-
linear double-pair-wise AFM configuration along the chain
direction due to an easy x-axis anisotropy. This configura-
tion clearly respects a polar-vector symmetry of the spins. The
y-components of the DM vectors introduce non-collinearity of
the spin-structure in the x–z plane by keeping the polar-vector
symmetry. In addition, the plane of the spins is slightly rotated
to the y axis, which shows the preference of the y axis with
respect to the z axis by on-site anisotropy (for a discussion
of the tilting of spin-spiral states see [25]). Switching on the
symmetric exchange anisotropy does not considerably affect
the spin-configuration.

As expected, in case of the 5-atom-long chain, see figure 4
right panel, the frustration of the isotropic exchange interac-
tions causes a strongly non-collinear spin arrangement, with
the middle spin oriented along the chain, again due to easy
x-axis anisotropy. The ground state exhibits, therefore, an
axial-vector symmetry. The y–z view of the spin configuration
shows that the plane of the spins is slightly tilted away from the
x–y plane, which ismainly due to the nonvanishing xz compon-
ents of the on-site anisotropy matrices. Switching on the DMI
further stabilizes this configuration by just slightly changing
the relative angles between the spins. On the other hand, the
plane of the spins is tilted close to the x–z plane which can be
attributed to large y components of the DM vectors [25]. As

for the 4-atom-long chain, including the symmetric exchange
anisotropy has negligible effect on the magnetic ground state.

The ground state configurations of the Fe chains onRh(111)
obtained from ab initio optimization and based on the bilinear
tensorial spin model compare remarkably well. However, in
particular, for the longer chains larger differences occurmostly
at the ends of the chains. In order to quantify the differences
between the magnetic configurations obtained from these two
methods we use the average mean deviation of the spin vectors
∆, the square of which is defined as

∆2 =
1
n

n∑
i=1

(smi − sai )
2, (17)

with smi and sai being the spin vectors at site i obtained from
the spin model and the ab initio optimization, respectively.
The mean deviations for the different chains are summarized
in table 2. It is apparent that the agreement between the mag-
netic ground states based on ab initio optimization and on the
spin model is significantly better for even chains which might
be attributed to the missing geometrical frustration, thus to
reduced non-collinearity in these systems.

As we mentioned before we also applied the ab initio
optimization technique to find the magnetic ground state of the
Fe chains in hcp stacking. Our results are shown in figure 5.
The magnitudes of the spin moments are very similar to those
obtained for the chains with fcc stacking. Concerning the
ground-state spin configurations, the double pair-wise AFM
structure keep dominating, which indicates that the isotropic
interactions are similar for both kinds of stacking geometry
of the Fe chains. Seemingly, the even chains remain almost
collinear. This behavior could be attributed to relatively weak
DM interactions compared to strong isotropic interactions.
However, a spin-model study as in case of the fcc-stacked
chains yields a ground-state configuration for the 6-atom
with enhanced non-collinearity, implying that the bilinear spin
model (equation (15)) is less suitable to recover the magnetic
ground state obtained from the ab initio optimization.

As in case of fcc stacking the odd chains with hcp stack-
ing show a largely non-collinear magnetic ground-state, while
the plane of the magnetic moments is almost normal to the
surface. For the 7-atom-long chain the magnetic ground state
shows axial-vector symmetry, see the fourth entry in figure 5.
In addition, we also found a metastable state with polar-vector
symmetry depicted in the last entry of figure 5, which is by
16.3meV higher in energy than the ground state. These two
configurations are related to each other by about 90◦ global
rotation around the normal of the plane of the spins, while the
metastable configuration is slightly tilted from the z axis. Note
that both configurations have right-handed chirality due to pos-
itive y components of the DM vectors.

3.2. Fe chains on Nb(110) and Re(0001)

In this section we present our main results on the magnetic
structure of Fe chains on top of Nb(110) and Re(0001) sur-
faces. These systems are of particular interest, since they
are supposed to host Majorana edge states [4–6]. Bulk Nb

6
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Figure 4. Ground-state spin configurations of a 4-atom-long Fe chain (left) and a 5-atom-long Fe chain (right) in fcc-stacked positions on
Rh(111) surface based on spin models as follows: (a) isotropic exchange interactions and on-site anisotropy, (b) the previous spin model
extended with DMI, and (c) full tensorial interactions.

Table 2. The mean deviation∆, defined by equation (17) between
the magnetic ground states obtained from ab initio optimization and
from the spin model (equation (15)).

n = 4 n = 5 n = 6 n = 7

0.332 0.417 0.297 0.601

has a bcc structure with lattice constant of aNb = 3.3004Å.
Using the Vienna Ab-initio Simulation Package (VASP) [57]
Lászlóffy et al [40] found that by putting an Fe adatom on
the (110) surface of Nb, the average vertical distance of the
atoms in the two uppermost Nb layers decreased to 2.2542Å
from the bulk value of 2.3337Å, while the vertical distance
between the Fe adatom and the closest Nb atoms decreased to
1.9868Å. In the calculations of atomic clusters of Fe these val-
ues were used for the interlayer distances between the upper-
most two Nb layers, as well as between the top Nb layer
and the first two vacuum layer, in which the Fe atoms were
embedded [40], respectively. We adopted this geometry in our
present calculations of the Fe chains in terms of the embedding
Green’s function technique. The host surface was modeled
by eight Nb layers and four empty sphere layers sandwiched
between semi-infinite bulk Nb and vacuum regions. The top
view of an Fe chain on the Nb(110) surface is shown in
figure 6.

We optimized the magnetic ground state of 5-, 10- and
15-atom long Fe chains deposited along the [110] (x) direc-
tion. Similar to the spin-model study in [40], we found that
the ground state of the investigated chains is a spin-spiral. In
figure 7 we present two optimized magnetic configurations
for the 10-atom long chain. Remarkably, the spin-moments of
the Fe atoms is by about 1µB less than in the chains on the
Rh(111) surface which is a typical volume effect. Due to the
fact that the hard axis of the system is y, the spins rotate in
the x–z plane. Based on a spin model with exchange inter-
actions obtained from first principles, in [40] a spin spiral

Figure 5. Magnetic ground state of monatomic chains of 4, 5, 6 and
7 Fe atoms on Rh(111) surface with hcp stacking obtained from
ab-initio optimization. For the details of the figure see the caption of
figure 3. The fourth entry from the top shows the magnetic ground
state of the 7-atom-long chain with axial vector symmetry, while the
last entry depicts a metastable state of this chain with polar vector
symmetry.

wavelength of λ = 3.39ax was found, where ax =
√
2aNb is

the distance between the subsequent iron atoms in the chain.
For the 10-atom-long chain, we performed a least square fit
of the rotation angles of the spins with respect to x axis to a
linear function and we obtained a slope of 2.17 rad/site which
translates into a spin-spiral wavelength of λ = 2.90ax, which
means a decrease by about 15% as compared to [40].
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Figure 6. Top view of an array of Fe atoms on top of a Nb(110) surface studied in the present work. The Fe and Nb atoms are marked by
red circles, the blue circles stand for the Nb atoms. The x, y and z axes correspond to the [110], [001] and [110] directions, respectively. The
chains are deposited along the [110] direction.

Figure 7. (a) Metastable and (b) ground state magnetic configurations obtained by ab initio optimization for a 10-atom long Fe chain on
Nb(110). Red and blue circles represent the Fe and Nb atoms, respectively. The red (unit)vectors show the direction of the magnetization
vector, while its magnitude is written inside the red spheres in µB units. The x, y and z directions correspond in order to the [110], [001] and
[110] directions. The pictures on the right show the y–z side-view of the spin vectors. Note that the rotational sense of spin-spiral (a) is
right-handed (clockwise) around the positive y axis, while spin-spiral (b) has a left-handed (anti-clockwise) rotational direction.

Figure 8. Ground-state spin-configuration of a 15-atom long Fe chain on Re(0001) substrate. The red spheres correspond to the Fe atoms,
while the blue ones belong the underlying Re layer. The x, y and z directions correspond to the [1000], [1200] and [0001] directions of the
hcp crystal structure, respectively. Red vectors show the directions of the atomic magnetic moments, while their magnitudes are written
inside the spheres in µB units.

It is obvious that the metastable state shown in figure 7(a)
and the ground state shown in figure 7(b) have opposite rota-
tional sense. The ground state is lower in energy by 1.7meV
than the metastable state, converted into about 0.08meV/Fe,
which is indeed in the energy range of the DMI of these
chains [40]. It is pointed out in [40] that the frustrated iso-
tropic interactions and the relatively strong anisotropy can sta-
bilize spin spirals with opposite chirality for longer chains. It
should be noted, however, that the ground state spin-spiral in
figure 7(b) has a left-handed (anti-clockwise) rotational sense
as opposed to that obtained from the spinmodel [40] which has
a right-handed (clockwise) rotational sense. This discrepancy
might be attributed to higher-order chiral spin–spin interac-
tions [25, 58] missing in the spin-model used in [40].

Finally, we turn to Fe chains deposited on top of the
(0001) surface of hcp rhenium. In our calculations we used
the bulk in-plane lattice constant of a2D = 2.761Å and the

interlayer relaxations found by Lászlóffy et al [25] in terms
of the VASP code [57]. As compared to the interlayer dis-
tance 2.281Å of the (0001) planes in bulk Re, the distance
between the uppermost Re layer and the Fe adatoms decreased
to 2.228Å, while the distance between the surface and sub-
surface Re layers reduced to 2.16Å. The Re(0001) surface
was modeled as an interface region between a semi-infinite
bulk Re and vacuum consisting of eight monolayers of Re and
four monolayers of empty spheres (vacuum). The iron chains
were embedded into the lowermost vacuum layer along theNN
direction (x).

The ground state magnetic configuration of a 15-atom-long
chain of Fe atoms obtained via ab initio optimization is shown
in figure 8. This ground state is obviously a similar spin-spiral
state as found by Lászlóffy et al [25] also by ab initio spin-
dynamics using a cut-off ℓmax = 2 for the multiple scatter-
ing calculations (see figure 5(e) of [25]). A linear fit of the

8
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rotational angles of the spin vectors in figure 8 yields a spin-
spiral wavelength of about 3.4a2D. Calculations on chains of
11, 13, 17 and 19 Fe atoms resulted in similar wavelengths.
This wavelength is considerably lower than the value of about
5a2D obtained in [25]. Nevertheless, both values are close to
λ = 4a2D found experimentally using spin polarized STM by
Kim et al [4] for a 40-atom long chain.

4. Summary

We performed fully converged unconstrained self-consistent
calculations of the magnetic ground state of Fe chains depos-
ited on different metallic surfaces by using a newly developed
method based on a combination of the conjugate gradient
and Newton–Raphson methods within the multiple scatter-
ing Green’s function embedding technique. In case of Fe
chains in fcc stacking positions on top of Rh(111) we found
that the building block of the obtained magnetic configura-
tions is a double pair-wise AFM structure that subsists for
chains of even number of Fe atoms, while for odd num-
ber of Fe atoms the geometrical frustration leads to strongly
non-collinear magnetic ground states. We established that,
as the length of the chain is varied, spin-configurations with
either axial or polar vector symmetry occur. Simulations
based on a tensorial spin-model showed that the isotropic
exchange couplings and the onsite anisotropy sufficiently
explain the main features of the magnetic ground state, but
the DMIs play an important role in the formation of the
final, complex spin-configuration. A numerical comparison
of the ground state spin-configurations from the two meth-
ods showed larger deviations for higher degree of complex-
ity (non-collinearity) of the magnetic states indicating that
higher order spin–spin interactions should be included in spin-
model studies. Our calculations revealed that the Fe chains
in hcp stacking positions have similar spin-structures as in
fcc stacking. For the 7-atom long chain the magnetic ground
state had axial vector symmetry, but we also found a meta-
stable state with polar vector symmetry stabilized by DM
interactions.

In case of Fe chains deposited on Nb(110) surface along the
second NN direction, we found almost degenerate spin-spiral
states with opposite chiralities in line with a recent spin-model
study by Lászlóffy et al [40], who demonstrated that the quasi-
degeneracy of these spin-spiral states is the consequence of the
frustration of isotropic interactions and the DM interactions,
while spin-spirals not preferred by the DMI are stabilized by
strong magnetic anisotropy. For Fe chains on Re(0001) sur-
face, our first principles optimization process led to spin spiral
states with a wavelength comparable with the experimental
finding [4].

In conclusion, we demonstrated that the optimization
method introduced in this work is an efficient tool to explore
the complex magnetic ground states of supported atomic
clusters. This might be particularly helpful for a material
specific design of new magnetic nanostructures for quantum
information technology based on low-dimensional topological
superconductivity.
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