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Abstract

We suggest a new mechanism for explaining the tilt of the magnetization away from the surface normal in certain
magnetic ultra-thin films. Our arguments are based on a simple classical spin Hamiltonian in which the magneto-
crystalline surface anisotropy is described by H
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i
and c
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are non-negative phenom-

enological constants, sz
i
denotes the z-component (normal to the surface) of the spin at the site labelled by i. In this paper

we study only the ground state. In contrast to the usual explanation which attributes the experimentally observed tilted
magnetization to the fourth-order term involving c

i
, we show that the second-order term alone can lead to this interesting

phenomenon. Our explanation implies that the magnetization of the successive layers are not collinear. As an illustration
of our arguments we discuss the experimentally observed orientational transition of the Co/Au(1 1 1) system in
quantitative details. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

As is well known by now, ultra-thin films of Fe,
Co and Ni on non-magnetic substrates or sand-
wiched between non-magnetic metals, such as
Cu, Ag or Au are frequently magnetized along
out-of-plane directions, whereas on the basis of

magnetostatic arguments one would expect their
magnetization to lie in-plane [1]. Currently, this
surprising phenomenon is at the centre of much
experimental [1—9] and theoretical [10—15] atten-
tion. In this paper we shall study two mechanisms
which can give rise to a ground-state magnetization
tilted at an angle h with respect to the surface
normal of the film.

This problem is of interest because in many
cases, such as Au/Co/Au or Cu/Fe/Cu sandwiches
[4—6], where the ground state of a monolayer is
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Fig. 1. Scheme of a thin magnetic film on a substrate displaying
the convention used for the orientations of magnetization.

perpendicularly magnetized and the rotation in-
plane, as further layers are added, takes place grad-
ually with the tilt angle h changing continuously
from h"0 at N"1 to h"p/2 at the critical thick-
ness of N

#
layers. In the face of it, this may be

a textbook example of the well-known orienta-
tional transition from one magneto-crystalline easy
axis (perpendicular) to another one (in-plane) [16].
Indeed, this is the view taken by all the authors who
have discussed the matter so far [4—7,12]. In what
follows, we shall suggest an alternative explanation
which implies a physical picture very different from
that of the conventional argument.

As the others [12,15] we shall study a model of
classical vector spins l

i
"k

i
s
i
(Ds
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D"1) localized at

the lattice sites labelled by i. It is described by the
Hamiltonian
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where the first term is an exchange interaction
energy, the second one is due to the dipolar interac-
tion between the spins while the third and the
fourth terms describe the magneto-crystalline an-
isotropy. To simplify matters we shall assume that
J
ij
"J for all nearest neighbor sites and zero other-

wise. Similarly, we shall neglect the variation of the
magnetic moment k

i
from site to site, even near the

surface, and adsorb it into the dipolar coupling
constant u

ij
"u"(k

0
/4n)k2/a3, where a is the

(in-plane) lattice constant. Consequently, the mag-
nitudes of the position vectors r

ij
are measured in

units of a. The single-site magneto-crystalline an-
isotropy terms have been added to describe the
effects of spin—orbit coupling [10]. Due to the re-
duced symmetry at the surface (interface), the coeffi-
cients j

i
are much larger on the surface (interface)

than in the bulk [17]. Therefore, we shall assign
finite values to them only on the surface (interface)
layers. On the contrary, when not zero c

i
will be

taken to be the same on all layers. An example of
the geometries of interest is illustrated in Fig. 1.

Of course, the above model is only a caricature of
the real physical situation which concerns itinerant
electrons. Nevertheless, although the first principles
account of magneto-surface anisotropy by Szuny-
ogh et al. [17] could address most of the problems
we shall investigate in this paper, for the point we
wish to make, the above model will suffice.

To illustrate the dilemma, let us assume that all
the spins are parallel and make an angle h with the
surface normal. Furthermore, let us denote the en-
ergy of such a configuration for N (100) layers of an
FCC lattice by E

N
(h) and seek the ground state of

the classical Hamiltonian (1) — neglecting for the
moment the last term — by minimizing E

N
(h) with

respect to h. For N"1

E
1
(h)"!2J!1

4
Au#(3

4
Au!j) cos2(h), (2)

where A is the so-called dipolar Madelung constant
[17]. Evidently, for j'3

4
Au the ground state cor-

responds to h"0, while for j(3
4
Au to h"n/2.

For N'1, E
N
(h) can also be readily determined,

and — as it will be shown in Section 3 — yields
a ground-state orientation h"0 for N(N

#
and

h"p/2 for N(N
#
, with no intermediate tilting

angle h in between. Thus the question arises: ‘‘what
does give rise to a tilt?’’

As discussed by Landau and Lifshitz [16], for
bulk magnets with two symmetry-determined easy
axis one can predict a magnetization which points
at an intermediate direction between them if one
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includes a contribution to the spin Hamiltonian
analogous to the fourth-order term in Eq. (1). In-
deed, it can be readily seen that for N"1 and cO0
the minimum in the energy occurs at a tilted angle

h"arccos(J(j!3
4
Au)/2c). Thus, it is natural that

Chappert and Bruno [4] and Jensen and Be-
nnemann [12] explained the observed tilt for the
magnetic thin films by invoking such higher-order
contribution to the anisotropy energy. The prin-
ciple aim of the present paper is to point out that
this is not the only mechanism for the tilted mag-
netization in the ground state. In fact, as we shall
show presently, the above solution of the energy
minimization problem to find the ground state is
incorrect and misleading. If we allow the spin ori-
entation to vary from layer to layer there is another
stationary state whose energy is lower than that of
the uniform configuration discussed above and cor-
responds to an average orientation tilted with re-
spect to the surface normal even when c"0. The
possibility of such non-collinear ground-state spin
configuration in magnetic thin films was first noted
by Mills [18,19]. Here we investigate in more detail
the circumstances when it can arise. To illustrate
the mechanism at work, in Section 2 we study the
case of a bilayer. In Section 3 we investigate the
orientational transition from perpendicular to in-
plane magnetization with increasing N, while in
Section 4 the effect of the fourth-order anisotropy
term is studied. Quantitative fits to experimental
data for the Co/Au(1 1 1) system are performed in
the last section stressing the importance of non-
collinearity even in the presence of fourth-order
anisotropy (cO0).

2. The case of a bilayer

Confining ourselves to spin states in which the
spins are parallel in a given layer but their orienta-
tions may differ from layer to layer, the energy of
N layers per 2D unit cell implied by Eq. (1) can be
written as

E
N
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where n
pq

is the number of nearest neighbors of
a site in layer p within layer q and A

pq
is the dipole

coupling constant determined by the lattice ge-
ometry. In order to find the extremal values of the
energy, Eq. (3), as a function of the set of angles
(h

1
, h

2
,2, h

N
) we seek the solutions of the Euler—

Lagrange equations:
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The aim of this and the forthcoming section is to
elaborate on the observation that allowing different
spin orientations in different layers naturally yield
a solution to the above equation which corre-
sponds to an average magnetization tilted with
respect to the surface normal even without requir-
ing the presence of the fourth-order anisotropy
term in Eq. (3) [15,18,19]. Consequently, in the
present (and also in the next) section c

p
is chosen to

be zero. Noting that many of our general con-
clusions are also valid in the multilayer cases, we
now confine ourselves to the case of a bilayer. In
particular, we will be looking for the set of anisot-
ropy constants (j

1
, j

2
) at given J and u for which

tilted average magnetization can occur.
To begin with, we observe that the uniform per-

pendicular and in-plane magnetizations, h
1
"h

2
"

0 and h
1
"h

2
"p/2, respectively, satisfy Eq. (4).

Interestingly, along the line in the parameter
space (j

1
, j

2
),

j
1
#j

2
"3

2
(A

11
#A

12
)u, (5)

the energies of the two solutions are degenerate.
Below this line the easy axis lies in the plane, whilst
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above it is perpendicular to it. Clearly, if the mag-
netization is to change continuously across this
line, solutions corresponding to tilted magneti-
zations should exist in its vicinity. An efficient way
to investigate these is to choose a pair of angles
h*
1
, h*

2
and determine the parameters j

1
, j

2
by de-

manding that h*
1

and h*
2

satisfy Eq. (4). Substituting
these parameters into Eq. (3), we can easily express
the energy of the tilted solutions as a function of the
orientations in the two layers:
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1
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Note that the position of the minimum, h*
1

and h*
2
,

as well as the minimum energy E
2
(h*

1
, h*

2
) are func-

tions of the parameters J, u, j
1

and j
2
. Evidently,

for h*
1
Oh*

2
the average magnetization is tilted with

respect to the surface normal. It is reassuring to
note that for no interaction between the two layers,
i.e., for n

12
"0 and A

12
"0, and on substituting

n
11
"4 for FCC (1 0 0) layers as well as abbreviat-

ing A
11

by A, Eq. (6) gives the double of the energy
in Eq. (2) for h"p/2.

By using Eq. (6) we now can compare the ener-
gies of the different types of solutions, i.e., those of
the collinear (h

1
"h

2
"0 or p/2) and the non-

collinear ones. After straightforward algebra we
find
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Remarkably, whenever they exist, the energy of
non-collinear states is always below or equal to the
energies corresponding to the perpendicular or in-
plane magnetizations.

Of course, there are regions in the parameter
space where h

1
"h

2
"0 or p/2 are the only solu-

tions. It is particularly interesting to investigate the
boundaries of such regions in the j

1
versus j

2
plane

for fixed values of the parameters J and u. It is
straightforward to show that the lower and upper
bound of the tilt area are given by
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respectively. The derivation of the above equations
with a complete study of the magnetic ground state
of the model will be published elsewhere. Here
we restrict our considerations to the evolution of
the tilt in the j

1
versus j

2
parameter space. The

ground-state phase diagram is shown in Fig. 2 for
u"0.1 as measured in units of J. We note that the
area of the tilt magnetization is getting larger as
u is increasing. Moreover, as the dipolar coupling
goes to zero (uP0) the upper and lower bound of
the tilt zone tends to the line defined in Eq. (5) and
we get back the Nèel model with ferromagnetic
ground state. Since the exchange coupling J is
generally much larger than the strength of the
dipole—dipole interaction u as well as the magni-
tudes of the anisotropy term j

p
, the orientations of

the spins in the different layers tend to be almost
parallel, i.e., the difference between the angles of the
tilted solutions will be small, typically less than
0.1 rad as was discovered by Mills et al. [18,19]. It
is also worthy to mention that collinear solution
other than those perpendicular or parallel to the
layer can exist only for j

1
"j

2
"3

4
(A

11
#A

12
)u

where, however, the orientations of the magneti-
zation are undefined (critical point).

3. Multilayers

Although the mathematics is somewhat more
complicated, the above discussion can be repeated
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Fig. 2. The ground-state phase diagram of a bilayer on the j
1
/u versus j

2
/u plane for u"0.1 (in units of J) and c

1
"c

2
"0. Schematic

pictures of the spin directions in the three characteristic regions of the phase diagram are shown on the right-hand side. The dashed line
is defined by Eq. (5).

for N ('2) layers starting from Eq. (4). In par-
ticular, it can be shown that if a non-collinear sol-
ution (h*

1
, h*

2
,2, h*

N
) exists for the multilayer

system, its energy is always smaller than those
corresponding to the ferromagnetic states being
magnetized perpendicular or parallel to the surface.
In order to dramatize the effect we are considering,
the anisotropy constants of the inner layers
(j

2
, j

3
,2, j

N~1
) have been chosen to be zero and

as in Section 2 the ground-state phase diagrams are
presented in the j

1
versus j

N
parameter space. This

choice is consistent with the results of first-prin-
ciples calculations [17,20] which generally pre-
dicted large magnetic anisotropy at the surface of
ferromagnetic films, or rather at the interface of the
film and the substrate, while yielding small values
in between. Note that in order to keep correspond-
ence with the previous section we continue to use
the notations j

1
and j

2
for the two non-vanishing

anisotropy constants.
Since the region where tilted solutions exist is

expected to separate those of the uniform in-plane
and perpendicular magnetizations it has to be close
to the line along which the energy of these two

solutions are equal,

j
1
#j

2
"3

4

N
+

p,q/1

A
pq

u, (11)

where the right-hand side is an obvious generali-
zation of that of Eq. (5). Since the dipolar Madelung
constants A

pq
, which depend only on the actual

layer geometry, rapidly decrease with an increasing
value of Dp!qD [17], the right-hand side of Eq. (11)
increases monotonously with N. Therefore, for
a given set of parameters j

1
, j

2
and u Eq. (11)

clearly determines the value of N
#
where — as men-

tioned in Section 1 — within the subset of collinear
magnetic states a first-order transition from per-
pendicular to in-plane magnetization occurs. As in
the case of Eqs. (9) and (10) the phase boundaries in
the j

1
versus j

2
plane can be determined yielding

a phase diagram for different multilayers as shown
in Fig. 3 for u"0.01. Evidently, the larger the
number of layers (N) the larger the area of the tilt
zone. As far as the N dependence of the orientation
of the magnetization for a given set of (j

1
, j

2
) is

concerned, there are two possibilities: the point
(j

1
, j

2
) is outside or inside one of the tilt zone. In
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Fig. 3. The ground-state phase diagram of multilayers with N"2—5 on the j
1
/u versus j

2
/u plane for u"0.01 (in units of J) and c

p
"0 (p"1,2,N). The average angle versus N phase diagrams are depicted for the points A, B and C on the right-hand side (see in the
text).

the first case (point A in Fig. 3) there is a discon-
tinuous reorientation transition as the number of
layers exceeds a critical value N

#
. In the second case

(point B in Fig. 3) at the critical thickness, the point
(j

1
, j

2
) is lying in the tilt zone of which, the layer-

averaged magnetization will have an intermediate
angle and mimic a continuous transition. Of
course, since the physical values of N form a dis-
crete set the word ‘continuous’ in the present con-
text needs to be interpreted with appropriate care.
Experimentally, during the growth process par-
tially filled layers can be achieved representing
a non-integer value for N, however, a theoretical
description of such cases is beyond the scope of the
present work. Interestingly, the tilt regions corre-
sponding to different values of N can overlap (see
point C in Fig. 3). This implies that for a given set
of parameters from such a region there exist (at
least) two different thicknesses of the multilayer
with tilted ground-state magnetization.

4. The effect of the fourth-order term

Above, we have argued that the fourth-order
term in Eq. (1) is, in principle, not necessary to

explain the presence of tilted magnetizations detec-
ted in several experiments [4—6]. In what follows
we reintroduce the fourth-order term into the the-
ory and study its effect on the ground-state phase
diagram. This will allow us to make contact with
the conventional arguments of Refs. [4,12].

An estimate, based on very general symmetry
arguments, of the fourth-order anisotropy leads to
the conclusion that it is comparable on all layers
and also not much different from its bulk value
[4,12]. Therefore, to simplify the foregoing dis-
cussion we let c

p
"c for all layers p. At the same

time, as before, we take j
p
’s to be non-zero only on

the top and the bottom layers. As it turns out, the
extra term +N

p/1
c cos4(h

p
) in E

N
(h

1
, h

2
,2, h

N
) does

not complicate matters too much. For instance, the
line along which the energies of the uniform per-
pendicular and parallel magnetizations are equal,
i.e. the generalization of Eq. (11), is given by

j
1
#j

2
"

3

4

N
+

p,q/1

A
pq

u#Nc. (12)

Whilst it is not surprising that the present general-
ized theory leads to a ground-state magnetization
which is tilted towards the surface normal, it is
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Fig. 4. The ground-state phase diagram of a bilayer on the j
1
/u

versus j
2
/u plane for u"0.04 and c"0.01 (both in units of J).

As a comparison, the upper boundary corresponding to the case
of c"0 is shown by a dashed line. The region where tilted
collinear spin-states, although not necessarily ground states,
exist is indicated by shading.

Fig. 5. Mean angles of the magnetization in the Co/Au(1 1 1)
system as deduced from Refs. [5,6]. The open circles indicate
that, most likely because of the lower Curie temperature, at
300 K no magnetization for N(2 was found.

unexpected that, again, the absolute minima refer
to non-collinear solutions. To demonstrate this
statement we generalize Eqs. (7) and (8) for a bi-
layer in the presence of fourth-order anisotropy
terms to yield

E
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Introducing the notation j@
p
"j

p
#2c cos2(h

p
)

we find the same boundaries for j@
1

and j@
2

as for
j
1
and j

2
in Eqs. (9) and (10). Since at the boundary

between the areas of the tilted and in-plane mag-
netizations on the ground-state phase diagram
h
p

tends to n/2, consequently, j@
p

tends to j
p
, the

fourth-order anisotropy does not affect the shape of
the lower boundary of the tilt region. However,
at the upper boundary h

p
P0 and, therefore,

j@
p
Pj

p
#2c. As a result, this boundary is simply

shifted by 2c on the phase diagram as compared to
the case of c"0. As mentioned in Section 1, in
a monolayer the fourth-order anisotropy causes
a tilting of the magnetization. In a multilayer this is
not necessarily the case. However, it makes the tilt
area broader relative to the case of c"0. This
broadening of the tilt region is shown in Fig. 4 for
a bilayer.

5. Application to the Co/Au(1 1 1) system
and conclusions

Having discussed the possibility of spin tilting in
general, the question arises whether measurements
on real systems can be reproduced by the spin
Hamiltonian (1) with a reasonable set of pa-
rameters. The most appealing system for such
a study is the Co/Au(1 1 1) system where both the
geometrical and the magnetic structure is simple,
and the intermediate transition region, where spin
tilting is found experimentally, is relatively broad.

In Fig. 5 the experimentally measured mean ori-
entations of magnetization in the Co

N
/Au(1 1 1)

thin films [5,6] are recorded. Characteristically, up
to a film thickness of 3 layers the magnetization
points normal to the surface, while above 6 layers it
lies parallel with it. In between there is a continuous
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Table 1
Parameters fitted to the measured mean directions of magneti-
zation in the Co/Au(1 1 1) system. Three different models were
used: non-collinear ground states without (A) and with (B)
fourth-order anisotropy term, and collinear tilted state in the
presence of fourth-order anisotropy term (C). Note that in case
C there is no information on the exchange parameter J. The
strength of the dipolar interaction was fixed to u"6.63 leV (see
in the text)

A B C

J@"J/u 179 1250 —
j@"j/u 37.3 43.0 44.3
c@"c/u — 1.25 1.56
J (meV) 1.19 8.29 —
j (meV) 0.247 0.285 0.294
c (leV) — 8.29 10.34
K

S
(mJ/m2) 0.554 0.638 0.657

K
2

(kJ/m3) — 79.1 98.8

transition in the angle of magnetization. Since the
present formalism accounts merely for perfect,
two-dimensional translation invariant layers, from
the set of points we used in our numerical fit we
excluded the value for the non-integer coverage
(N"4.5) also given in Refs. [5,6].

Because of the small number of data points, we
had to decrease considerably the number of
parameters in the spin Hamiltonian. Some of
such restrictions were introduced before, namely,
J
pq
"J, u

pq
"u, j

p
"0 for p"2,2,N and, in the

presence of fourth-order anisotropy, c
1
"c for all p.

Additionally, we choose j
p

at only one terminal
layer to be non-zero. This approach is partially
supplied by our experience of previous first-prin-
ciples studies predicting generally much larger an-
isotropy at the interface between the magnetic film
and the non-magnetic substrate than at the surface
[17,20]. Therefore, in total there remained four
independent parameters which define our model
Hamiltonian (1): J, u, j and c. If, however, one is
interested only in the angles which characterize the
ground states, but not in the ground-state energies,
it is sufficient to deal with three ratios J@"
J/u, j@"j/u and c@"c/u. It should also be noted
that we calculated the dipole—dipole Madelung
constants A

pq
for an FCC(1 1 1) geometry.

To highlight the role of various factors which
determine the tilt angle, we used three different
schemes to fit the experimental data: (A) without
fourth-order anisotropy (c"0), (B) with fourth-or-
der term and also, (C) based on the collinear tilted
state for cO0. It is noteworthy that whilst within
scheme C the parameters j@ and c@ unambiguously
determine the magnetic orientation, a numerical fit
of the proper, non-collinear ground states of the
Hamiltonian (1) to a measurement of the magnetic
directions also determines the Heisenberg exchange
parameter J.

The parameters as obtained from the different
kinds of numerical fits are listed in the upper part of
Table 1. In all the three cases the mean angles
presented in Fig. 5 could be recovered with an
accuracy less than 0.02 rad. Apparently, the value
of J@ for case A is seven times smaller than that for
case B. In view of the previous sections, this in fact,
is not surprising, since for c"0 the only way to
broaden the tilting regions corresponding to

a given thickness of the film — thus to achieve
overlap between different layer thicknesses (see
Fig. 3) — is to increase the ratio u/J or equivalently
decrease J@. Since for B and C the competition of
the second and fourth-order anisotropies broadens
the tilting regions, the value of J@ can be consider-
ably increased in these cases. A less pronounced
difference between schemes B and C is a decrease of
c@ by about 20%. This trend is again clear, since
by taking into account the proper non-collinear
ground states the tilting region broadens relative to
that of the collinear case (see Fig. 4).

In order to provide parameters which can be
compared to first-principles calculations, or even
to other experiments, we made an estimate of
the magnetic moment of Co to be 1.7 l

B
[21] and

then, by using the 2D lattice constant of the (1 1 1)
facet of FCC gold (a"5.43 a.u.), we calculated
uK6.63 leV. The corresponding values for J,
j and c are seen in the middle part of Table 1. The
surface and second hexagonal anisotropy con-
stants, K

S
and K

2
, respectively, as computed from

the parameters j and c are presented in the lower
part of Table 1. While the surface anisotropy con-
stants compare reasonably well with that given
in Refs. [5,6] (0.62 mJ/m2), our values for K

2
are somewhat lower than the bulk value of
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K
2

(143 kJ/m3). A possible reason for that might be
that in our model we considered an FCC(1 1 1)
layer geometry with the lattice constant of bulk
gold rather than the hexagonal Co bulk structure.

As pointed out above, an interesting feature of
the non-collinearity of ground states is that they
give information on the exchange parameter J. The
fact, however, that the experiments were carried out
at room temperature, implies that — at least for
N'2 [5,6] — the Curie temperature, ¹

C
, for the

thin film must be higher. From this point of view,
J for case A seems to be rather low, while for case
B it displays a fairly reasonable value. This may be
taken as an indication that fourth-order anisotropy
does play a role in the Co/Au(1 1 1) system. How-
ever, the connection between J and ¹

C
for thin

films is not firmly established and we would prefer
to defer judgement on this matter pending further
experiments. A particularly useful one of these
would be a study of the reorientation as a function
of j

1
—j

2
. Evidently, for the fourth-order (c only)

mechanism, a change in j
1
—j

2
would have a little

effect, while the non-collinear state would be dra-
matically altered. Perhaps the easiest experiments
would be to compare the behavior of a non-mag-
netic substrate/magnetic film/open surface system
with that of a magnetic film sandwiched between
two equivalent non-magnetic covers. As Fig. 4 indi-
cates, in the latter case, j

1
"j

2
, the transition

region would be dominated by c. On the other
hand, in the asymmetric system the non-collinear
magnetism could produce a significantly broader
transition.

In summary, we have presented a careful invest-
igation of the ground states of a simple spin-Hamil-
tonian containing magnetostatic dipole—dipole
interaction, as well as second- and fourth-order
surface magneto-crystalline anisotropies. We have
shown that continuous reorientation transition
with respect to the thickness of an ultra-thin mag-
netic film is a direct consequence of the model even
in the absence of fourth-order anisotropy. Interest-
ingly, we find that the spins corresponding to the
tilted average magnetization are necessarily non-
collinear. Fits to the measured directions in the
Co/Au(1 1 1) thin films show that at present there
are not enough experimental data to distinguish

between alternative explanations for the phenom-
enon. Finally, we proposed some new experiments
which could do so.
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