
PHYSICAL REVIEW B, VOLUME 65, 144448
Ab initio calculation of Kerr spectra for semi-infinite systems including multiple reflections
and optical interferences
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Based on Luttinger’s formulation the complex optical conductivity tensor is calculated within the framework
of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method for layered systems by means of a
contour integration technique. For polar geometry and normal incidence,ab initio Kerr spectra of multilayer
systems are then obtained by including via a 232 matrix technique all multiple reflections between layers and
optical interferences in the layers. Applications to Co/Pt5 and Pt3 /Co/Pt5 on the top of a semi-infinite fcc~111!
Pt bulk substrate show a good qualitative agreement with the experimental spectra, but differ from those
obtained by applying the commonly used two-media approach.
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I. INTRODUCTION

Magneto-optical effects not only provide a powerful to
in probing the magnetic properties of solids,1–3 but are also
of direct technological interest as phenomena to be used
high-density magneto-optical recording.2,4 Up to now, how-
ever, realistic theoretical investigations were lacking,
cause band-structure methods using supercells5 cannot pro-
vide an adequate description of layered systems, for wh
special computational techniques such as the spin-polar
relativistic screened Korringa-Kohn-Rostoker~SKKR!
method have been designed.6–8 Furthermore, the absorptiv
parts of the optical conductivity tensor, as obtained from
interband contributions,9 are not sufficient for magneto
optical Kerr spectra calculations, since the dissipative p
also have to be known. Hence, in supercell-type calculatio
besides the necessity to use the Kramers-Kronig relati
one also has to include the interband contributions by me
of a semiempirical Drude term.10 Only recently a better
scheme was developed by two of the present authors,11 in
which a contour integration was used to obtain the comp
optical conductivity tensor as based on Luttinger’s formula12

which in turn includes all interband and intraban
contributions.13 Combining this contour integration tech
nique with the SKKR method, realistic interlayer and intr
layer complex optical conductivities can be obtained for la
ered systems.

Having evaluated the interlayer and intralayer optical c
ductivities, the magneto-optical Kerr spectra can then be
culated by using a macroscopical model such as, e.g.,
two-media approach.14 Because a layered system conta
more boundaries than just the interface between the vac
and the surface layer, the two-media approach does not
include the dynamics of the electromagnetic waves propa
tion in such systems. Since the pioneering work of Abele´s in
0163-1829/2002/65~14!/144448~11!/$20.00 65 1444
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1950,15 several methods have been known in t
literature16,17 to treat multiple reflections and interferenc
using either a 232 matrix18,19 or 434 matrix20–22 tech-
nique. In the present paper the magneto-optical Kerr spe
of layered systems are evaluated for the most frequently u
experimental setup, namely, polar geometry and normal
cidence, by making use of the complex optical conductiv
tensor and the 232 matrix technique.

In Sec. II the theoretical background is reviewed briefl
Computational aspects are then summarized in Sec. III
Sec. IV the two-media approach~Sec. IV A! and the applied
232 matrix technique~Sec. IV C! are viewed as two differ-
ent macroscopic models of how to calculate magneto-opt
Kerr spectra of layered systems. Particular emphasis
placed in Sec. IV B on the construction of layer-resolv
permittivities in terms of the~macroscopic! material equation
within linear response. This construction method, combin
with the 232 matrix technique, allows one to determin
layer-resolved permittivities self-consistently, see S
IV C 4. As an illustrationab initio Kerr spectra of Co/Pt
multilayer systems are presented and discussed in Se
Finally, in Sec. VI the main results are summarized.

II. THEORETICAL FRAMEWORK

A. Luttinger’s formalism

The frequency-dependent complex optical conductiv
tensors̃(v) can be evaluated starting from the well-know
Kubo formula and using a scalar potential description of
electric field.23 However, by using the equivalent24 vector
potential description of the electric field, one ends up w
Luttinger’s formula12

s̃mn~v!5
S̃mn~v!2S̃mn~0!

\v1 id
, ~1!

with the current-current correlation function as given by25
©2002 The American Physical Society48-1
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S̃mn~v!5
i\

V (
m,n

f ~en!2 f ~em!

\v1 id1~en2em!
Jnm

m Jmn
n . ~2!

Here f (e) is the Fermi-Dirac distribution function,em anden
are a pair of eigenvalues of the one–electron Hamilton
Jmn

m are matrix elements of the electronic current opera
(m5x,y,z), andV is the reference~crystalline! volume.

The positive infinitesimald implies that the electromag
netic field is turned on att52`, and hence describes th
interaction of the system with its surroundings.26 However,
as can be seen from Eq.~2!, d can also be viewed as a finit
lifetime broadening, which accounts for all scattering p
cesses at a finite temperature.

Luttinger’s formula @Eq. ~1!# and Eq. ~2! have several
advantages over the commonly used optical conductivity
sor formula of Callaway.9 First of all, in contrast to the latter
Eq. ~1! simultaneously provides both the absorptive and d
sipative parts of the optical conductivity tensor. Hence th
is no need for using the Kramers-Kronig relations in Luttin
er’s formalism. On the other hand, as recently shown,13 Lut-
tinger’s formalism accounts for both interband and intraba
contributions on the same footing. Thus by using Eq.~1! in
combination with Eq.~2!, one does not need to include
phenomenological Drude term in order to simulate the in
band contribution.5 Furthermore, as was also demonstrate13

Eqs. ~1! and ~2! can be used for calculations in the sta
(v50) limit, provided the lifetime broadening is kept finit
(dÞ0).

B. Contour integration technique

Instead of evaluating the sums in the expression for
current-current correlation function@Eq. ~2!# over eigenval-
ues of the one-electron Hamiltonian,S̃mn(v) can be calcu-
lated by means of a contour integration in the complex
ergy plane. For the selection of a particular contourG, this
technique11 exploits the facts that, with the exception of th
Matsubara poleszk5«F1 i (2k21)dT (k50,61,62, . . . ,
anddT5pkBT),27 in both semiplanes the Fermi-Dirac distr
bution function of complex argumentf (z) is analytical25 and
is a real function for complex energiesz5«6 id j situated in
between two successive Matsubara poles.28 The latter prop-
erty of f (z), e.g., is exploited by usingd j52NjdT , where
N1 is the number of Matsubara poles included inG in the
upper semiplane andN2 in the lower semiplane.11

By applying the residue theorem, it has been shown11 that,
equivalently to Eq.~2!, one has

S̃mn~v!5 R
G

dz f~z! S̃mn~z1z,z!

2F R
G

dz f~z! S̃mn~z2z* ,z!G*
22idT (

k52N211

N1

@S̃mn~zk1z,zk!

1S̃mn* ~zk2z* ,zk!#, ~3!
14444
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such that

S̃mn~0!5 R
G

dz f~z! S̃mn~z,z!22idT (
k52N211

N1

S̃mn~zk ,zk!,

~4!

wherez5\v1 id and the kernel

S̃mn~z1 ,z2!52
\

2pV
Tr@JmG~z1! Jn G~z2!#, ~5!

is related to the electronic Green functionG(z). The auxil-
iary quantityS̃mn(z1 ,z2) was already used in residual resi
tivity calculations (v,T50) of substitutionally disordered
bulk systems29 and magnetotransport calculations of inhom
geneously disordered layered systems.30 Only recently, how-
ever, it was shown,13 that Eqs.~3!–~5! preserve all the ad-
vantages and features of Luttinger’s formalism, as alre
mentioned above.

In the present paper,S̃mn(z1 ,z2) is evaluated in terms o
relativistic current operators30 and the Green functions pro
vided by the spin-polarized relativistic SKKR method f
layered systems6–8. The optical conductivity tensor of a
multilayer system is then given31 by

s̃~v!5 (
p51

N

(
q51

N

s̃ pq~v!, ~6!

with s̃ pq(v) referring to either the interlayer (pÞq) or in-
tralayer (p5q) contribution to the optical conductivity ten
sor.

III. COMPUTATIONAL DETAILS

In addition to the number of Matsubara poles consider
the optical conductivity tensor also depends on the num
of complex energy pointsnz used in order to evaluate th
energy integrals in Eqs.~3! and~4!, and on the number ofkW

points used to calculate the scattering path operators
define the Green functions7 and S̃mn(z6\v1 id,z) for a
given energyz. Recently, the present authors proposed t
schemes to control the accuracy of thesez and kW

integrations.32

The first of these schemes is meant to control the accu
of the z integrations along each contour part by compar
the results obtained from the Konrod quadrature,33,34

K2nz11S̃mn(v), with those from the Gauss integratio

rule, Gnz
S̃mn(v).35 On a particular part of the contou

S̃mn(v) is said to be converged if the convergence criterio32

maxuK2nz11S̃mn~v!2Gnz
S̃mn~v!u<«z , ~7!

is fulfilled for a given accuracy parameter«z .
The other scheme refers to the cumulative special po

method,32 which permits one to perform two-dimensionalkW -
space integrations with an arbitrary high precision. T
method exploits the arbitrariness of the special points m
origin.36 For a given~arbitrary high! accuracyekW the conver-
gence criterion
8-2
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maxuSni
S̃mn~z8,z!2Sni 21

S̃mn~z8,z!u<«kW ~8!

has to apply for any complex energyz on the contour orzk
Matsubara pole. Hereni52i 12n0 (n0PN) is the number of
divisions along each primitive translation vector in the tw
dimensionalkW space, andz85z1z andz2z* .

In the present paper, the optical conductivity tensor cal
lations were carried out forT5300 K, using a lifetime
broadening of 0.048 Ry andN252 Matsubara poles in the
lower semiplane. Because the computation ofs̃mn(v) does
not depend on the form of the contour,32 in the upper semi-
plane we have accelerated the calculations by conside
N1537 Matsubara poles. The convergence criteria@Eqs.~7!
and ~8!# were fulfilled for «z5«kW51023 a.u.

IV. MAGNETO-OPTICAL KERR EFFECT

In the case of the polar magneto-optical Kerr effe
~PMOKE!,14 the Kerr rotation angle

uK52
1

2
~D12D2! ~9!

and the Kerr ellipticity

«K52
r 12r 2

r 11r 2
~10!

are given in terms of the complex reflectivity of the righ
~1! and left-handed~–! circularly polarized light:

r̃ 65
E 6

(r)

E (i)
5r 6eiD6. ~11!

Here the complex amplitude of the reflected right- and le
handed circularly polarized light is denoted byE 6

(r) , and that
of the incident light byE (i) ; D6 is the phase of the comple
reflectivity r̃ 6 and r 65u r̃ 6u. Equations~9! and ~10! are ex-
act, which can easily be deduced from simple geometr
arguments. However, in order to apply these relations,
needs to make use of a macroscopic model for the occur
reflectivities.

A. Macroscopic model I: the two-media approach

This simplest and most commonly used macrosco
model treats the multilayer system as a homogeneous, a
tropic, semi-infinite medium, such that the incident light
reflected only at the boundary between the vacuum and
surface ~top! layer. In case of normal incidence the tw
media approach provides an appropriate formula for
complex Kerr angle14

F̃K[uK2 i«K5 i
r̃ 12 r̃ 2

r̃ 11 r̃ 2

, ~12!

which can be deduced from Eqs.~9! and~10! by assuming a
small difference in the complex reflectivity of the right- an
left-handed circularly polarized light. Because Ims̃xy(v)
usually is almost a hundred times smaller than Res̃xx(v)
14444
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~see Ref. 13!, the average complex refractive index of th
right- and left-handed circularly polarized light is dominat
by s̃xx(v), and hence a direct formula results from E
~12!,14

F̃K'
s̃xy~v!

s̃xx~v!

1

A12
4p i

v
s̃xx~v!

, ~13!

with s̃(v) as given by Eq.~6!. It should be noted that the
‘‘direct’’ formula in Eq. ~13! was introduced by Reim and
Schoenes14 in order to extract the optical conductivity tens
elementss̃xx(v) and s̃xy(v) from experimental PMOKE
data.

B. Macroscopic model II: layer-resolved permittivities

Within linear response theory37 the Fourier-transformed
macroscopic material equations,38 averaged over the refer
ence volumeV, directly yield the total electric displacemen

1

VEV
d3r DW ~rW,v!5

1

VEV
d3r E

V
d3r 8ẽ~v;rW,rW8!EW ~rW8,v!,

~14!

provided that the dielectric functionẽ(v;rW,rW8) and the Fou-
rier components of the electric fieldEW (rW8,v) are known.
Using nonoverlapping cells in configuration space@the
atomic sphere approximation, applied in the present
proach#, the reference volume can be written as

V5 (
p51

N S Ni(
i

VpiD[ (
p51

N

Vp,

whereNi is the number of atoms per layer~the same two-
dimensional lattice has to apply for each layerp), N the total
number of layers, andVpi the volume of thei th atomic
sphere in layerp.

Assuming that plane waves propagate in a layer as t
do in a two-dimensional unbound homogeneous mediu
and thatDW pi(rW,v)5DW p(rW,v), the integral on the left-hand
side of Eq.~14! can be written within the ASA as

E
V
d3r DW ~rW,v!

5Ni (
p51

N

DW p(
i

VpiF116(
k51

`
~21!k~k11!

~2k13!!

3S 2p

l0
npSpiD 2kG , ~15!

whereDW p is the amplitude of the electric displacement,nW p is
the refraction vector,

nW p5
qW p

q0
, ~16!
8-3



e

o
-

ed

at

ns
ty
s

od

all
ys-
niso-

ized

s of

ts
.

-

he
dja-
lved
ffi-
flec-

-

a
ol-
d
as

, in
the

and

or-

A. VERNES, L. SZUNYOGH, AND P. WEINBERGER PHYSICAL REVIEW B65 144448
qW p is the wave vector (q052p/l0 refers to the propagation
constant in vacuum!, andSpi is the radius of thei th atomic
sphere in layerp. Accordingly, the double integral on th
right- hand side of Eq.~14! reduces to

E
V
d3r E

V
d3r 8ẽ~v;rW,rW8!EW ~rW8,v!

5~4p!2Ni (
p,q51

N

EWq(
i , j

E
0

Spi
dr r 2

3E
0

Sq j
dr8 ~r 8!2ẽ pi,q j~v;r ,r 8!

3 F11 (
k51

`
~21!k

~2k11!! S 2p

l0
nqr 8D 2kG , ~17!

whereEWq is the amplitude of the electric field in layerq, and
eY pi,q j(v;r ,r 8) is the dielectric function ẽ(v;rW,rW8) at
rWPVpi and rW8PVq j .

In the case of visible light the wave-vector dependence
the permittivity is negligible.14 Therefore, after having sub
stituted Eqs.~15! and~17! into Eq.~14!, only the first term in
the power series expansions has to be kept, which imm
ately leads to

(
p51

N FDW p2 (
q51

N

ẽ pq~v!EWqG(
i

Vpi50,

where the interlayer (pÞq), intralayer (p5q) permittivities
are given by

ẽ pq~v!5
~4p!2

(
i

Vpi

(
i , j

E
0

Spi
dr r 2E

0

Sq j
dr8 ~r 8!2

3 ẽ pi,q j~v;r ,r 8!.

It should be noted that a similar result connecting the st
current in layerp to the electric field in layerq is already
known from electric transport theory in inhomogeneous39 or
layered systems.30 By using the relationDW p5 ẽ p(v)EWp , the
layer-resolved permittivitiesẽ p(v) are then solutions of the
following system of equations:

ẽ p~v!EWp5 (
q51

N

ẽ pq~v! EWq , p51, . . . ,N. ~18!

By mapping the interlayer and intralayer contributio
s̃ pq(v) to the microscopically exact optical conductivi
tensors̃(v) @Eq. ~6!#, onto the corresponding contribution
of the permittivity tensor,

ẽ pq~v!5
1

N F11
4p i

v
s̃ pq~v!G , ~19!

one then can establish a well-defined macroscopical m
for the evaluation of Kerr spectra.
14444
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C. 2Ã2 matrix technique

1. Multiple reflections and optical interferences

In contrast to the two-media approach, the inclusion of
optical reflections and interferences within a multilayer s
tem assumes that each layer acts as a homogeneous, a
tropic medium between two boundaries, and is character
by a layer-resolved dielectric tensorẽ p (p51, . . . ,N).18,19

As a first step the Fresnel or characteristic equation40

uñ p
2dmn2ñpmñpn2 ẽ mn

p u50 ~m,n5x,y,z! ~20!

has to be solved in order to determine the normal mode
the electromagnetic waves in a particular layerp.41 Then by
solving the Helmholtz equation for each normal mode,41

(
n

~ ñ p
2dmn2ñpmñpn2 ẽ mn

p !Epn50 ~m,n5x,y,z!,

~21!

the correspondingEpn components of the electric field in
layer p are deduced. After having obtained theEpns, the curl
Maxwell equation18,19

HW p5nW p3EWp ~22!

provides the amplitudes of the magnetic fieldsHW p for each
normal mode in layerp. Here the Gaussian system of uni
has been used,nW p is the refraction vector, as given by Eq
~16!, and unW pu5ñp , which in an anisotropic medium is di
rection and frequency dependent.40

Finally, the continuity of the tangential components of t
electric and magnetic fields at the boundary between a
cent layers leads to a set of equations which has to be so
recursively in order to determine the magneto-optical coe
cients of the layered system, such as, e.g., the surface re
tivity. If no symmetry-reduced quantitiesẽ p are used, all the
previous steps@Eqs. ~20!–~22!# have to be performed nu
merically by using— for example— the 232 matrix tech-
nique of Mansuripur.18,19

Most frequently MOKE experiments are performed in
polar geometry using normal incidence. Therefore in the f
lowing the 232 matrix technique of Mansuripur is confine
to this particular experimental geometry. This reduction h
the advantage that, with the exception of the last step
which the surface reflectivity has to be evaluated, all
other steps can be carried out analytically.

In the case of cubic, hexagonal or tetragonal systems
the orientation of the magnetizationMW p pointing along the
surface normal (z direction!, the layer-resolved permittivity
tensor is given by

ẽ p5S ẽxx
p ẽxy

p 0

2 ẽxy
p ẽxx

p 0

0 0 ẽzz
p
D . ~23!

Assuming thatẽzz
p . ẽxx

p (p51, . . . ,N), the error introduced
by this simplification— as can easily be shown — is prop
8-4



c

s

e
al

-

iz

ni

tz
en

the
ol-

1

l

the

of
the

th

tem
al

AB INITIO CALCULATION OF KERR SPECTRA FOR . . . PHYSICAL REVIEW B65 144448
tional to the differenceẽzz
p 2 ẽxx

p , which in turn is usually
small enough to be neglected. If in polar geometry the in
dence is normal,

ñpx5ñpy50 for p51, . . . ,N,

the characteristic equation~20! provides four normal mode
of electromagnetic waves in a layerp:

ñpz56Aẽxx
p 6 i ẽxy

p .

Two of these four solutions are always situated in the low
half of the complex plane and the other two in the upper h
The first two solutions,ñpz

(1) andñpz
(2) correspond to a ‘‘down-

ward’’ ~negativez direction! propagation of the electromag
netic waves, and the other two,ñpz

(3) and ñpz
(4) , to an ‘‘up-

ward’’ propagation ~positive z direction!.18,19 These two
different kinds of cases are given by

ñpz
(1)52Aẽxx

p 1 i ẽxy
p ,

ñpz
(2)52Aẽxx

p 2 i ẽxy
p ~24!

and

ñpz
(3)5Aẽxx

p 1 i ẽxy
p

ñpz
(4)5Aẽxx

p 2 i ẽxy
p . ~25!

If in a given multilayer system a particular layerp is
paramagnetic, its permittivity tensorẽ p is again of form
shown in Eq.~23!, with ẽxy

p 50 and ẽzz
p 5 ẽxx

p . In this case
only two beams are propagating, namely, those character
by ñpz

(1)[ñpz
(2)52Aẽxx

p and ñpz
(3)[ñpz

(4)5Aẽxx
p . Furthermore,

since the vacuum is a homogeneous, isotropic, semi-infi
medium, in addition toẽxy50, ẽxx5 ẽzz51.

For each solutionñpz
(k) (k51, . . . ,4) of thecharacteristic

equation~20!, the electric field must satisfy the Helmhol
equation~21!. Because not all of the equations are indep

TABLE I. Solutions of the Helmholtz equation~21! for polar
geometry and normal incidence, neglecting the difference in
diagonal elements of the layer-resolved permittivity.E pm

(k) is the am-
plitude of the electric field in layerp for beamk.

k 1 2 3 4
E px

(k) arbitrary iE py
(2) arbitrary iE py

(4)

E py
(k) iE px

(1) arbitrary iE px
(3) arbitrary

E pz
(k) 0 0 0 0
14444
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dent, these can be solved only for two components of
electric field, keeping the third one arbitrary. Therefore, f
lowing the strategy proposed by Mansuripur, for beam
(ñ pz

(1)) and beam 3 (ñ pz
(3)) the correspondingE px

(k) are chosen

to be arbitrary, whereas for beam 2 (ñpz
(2)) and beam 4 (ñpz

(4)),
the Epy

(k) are arbitrary.18,19 For polar geometry and norma
incidence, the solutions of the Helmholtz equation~21! are
given in Table I, and the corresponding components of
magnetic field as obtained from Eq.~22! are listed in Table
II.

2. Layer-resolved reflectivity matrix

Numbering the layers starting from the first one on top
the substrate toward the surface, the surface layer has
layer indexp5N, see Fig. 1. The 232 reflectivity matrix
Rp at the lower boundaryzp of layer p is given by18,19

S E px
(3)

E py
(4)D 5RpS E px

(1)

E py
(2)D 5S r̃ p 0

0 r̃ p8
D S E px

(1)

E py
(2)D ; ~26!

e

FIG. 1. The macroscopic model used for a layered sys
within the 232 matrix technique for polar geometry and norm

incidence. Thex axis is perpendicular to the plane of the figure,qW ( i )

is the incident wave vector andqW (r ) is the reflected wave vector.MW

denotes the total spontaneous magnetization of the system.
e-
TABLE II. Solutions of the curl Maxwell equation~22! for polar geometry and normal incidence, n
glecting the difference in the diagonal elements of the layer-resolved permittivitye p. H pm

(k) is the amplitude
of the magnetic field in layerp for beamk.

k 1 2 3 4
H px

(k) iE px
(1)Aẽxx

p 1 i ẽxy
p E py

(2)Aẽxx
p 2 i ẽxy

p 2 iE px
(3)Aẽxx

p 1 i ẽxy
p 2E py

(4)Aẽxx
p 2 i ẽxy

p

H py
(k)

2E px
(1)Aẽxx

p 1 i ẽxy
p 2 iE py

(2)Aẽxx
p 2 i ẽxy

p E px
(3)Aẽxx

p 1 i ẽxy
p iE py

(4)Aẽxx
p 2 i ẽxy

p

H pz
(k) 0 0 0 0
8-5
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also see the explicit discussion in the Appendix. The tang
tial components of the electric and magnetic field at a po
zp

1 just above the boundaryzp are then given by

S Epx

Epy
D

z
p
1

5A~I1Rp!S E px
(1)

E py
(2)D ,

S Hpx

Hpy
D

z
p
1

5B p
12~I2Rp!S E px

(1)

E py
(2)D , ~27!

where, according to Tables I and II,

A[S 1 i

i 1D , B p
12[S 2 i ñpz

(1) 2ñpz
(2)

ñpz
(1) i ñpz

(2)D ~28!

andI is the 232 unit matrix.
Using the lower boundaryzp21 as a reference plane fo

the four beams in layerp21, the tangential components o
the electric and magnetic fields at a pointzp

2 just below the
boundaryzp are of the forms

S Epx

Epy
D

z
p
2

5A~Cp21
12 1Cp21

34 Rp21!S Ep21x
(1)

Ep21y
(2) D ,

S Hpx

Hpy
D

z
p
2

5Bp21
12 ~Cp21

12 2Cp21
34 Rp21!S Ep21x

(1)

Ep21y
(2) D , ~29!

where

Cp21
k,k11[S e1 i w̃p21

(k)
0

0 e1 i w̃p21
(k11)D , k51,3, ~30!

with

w̃p21
(k) [q0ñp21z

(k) dp21 , k51, . . . ,4.

Heredp[zp112zp is the thickness of layerp, ñp21z
(k) is de-

fined in Eqs.~24! and ~25!, andq0 is the propagation con
stant in vacuum, see Sec. IV B.

Based on Eqs.~27! and~29!, the continuity of the tangen
tial components of the electric and magnetic field on
boundaryzp implies that

~I1Rp!S Epx
(1)

Epy
(2)D 5~Cp21

12 1Cp21
34 Rp21!S Ep21x

(1)

Ep21y
(2) D ,

B p
12~I2Rp!S Epx

(1)

Epy
(2)D 5Bp21

12 ~Cp21
12 2Cp21

34 Rp21!S Ep21x
(1)

Ep21y
(2) D ,

such that by eliminating the electric field vectors, one imm
diately obtains

Dp21~I1Rp!5B p
12~I2Rp!,

where
14444
n-
t

e

-

Dp21[Bp21
12 ~Cp21

12 2Cp21
34 Rp21!~Cp21

12 1Cp21
34 Rp21!21.

~31!

Rp is therefore given in terms ofRp21 by the following
simple recursion relation:

Rp5~B p
121Dp21!21~B p

122Dp21! p51, . . . ,N.
~32!

In order to determine the reflectivity matrixRN of the sur-
face layer, one has to evaluate all reflectivity matricesRp for
all layers below the surface layer. This requires starting
iterative procedure at the first layer (p51) on top of the
substrate. But in order to calculateR1, one needs to know
the 232 matrix D0 corresponding to the substrate; see E
~32!. This in turn, according to Eq.~31! is only the case if the
reflectivity matrixR0 of the substrate is available. In order
achieve this, one has to formulate the tangential compon
of the electric and magnetic fields atz1

2 by taking into ac-
count that the substrate is a semi-infinite bulk without a
boundaries, and henceR050.18,19ThusD05B 0

12, which ac-
cording to Eq.~28! requires specifying the permittivity of the
substrate.

3. Surface reflectivity matrix

In the vacuum region, sinceẽxx51 andẽxy50, one has to
deal with the superposition of only two beams, namely, t
of the incident and reflected electromagnetic waves. Th
beams are related through the surface reflectivity matrixRsurf
such that for polar geometry and normal incidence,

S Evac,x
(r)

Evac,y
(r) D 5RsurfS Evac,x

(i)

Evac,y
(i) D[S r̃ xx r̃ xy

2 r̃ xy r̃ xx
D S Evac,x

(i)

Evac,y
(i) D ; ~33!

see the Appendix. Thus the tangential components of
electric and magnetic fields at a pointzN11

1 , namely, just
above the interface between the vacuum and the surface
given by

S Evac,x

Evac,y
D

z
N11
1

5~I1Rsurf!S Evac,x
(i)

Evac,y
(i) D ,

S Hvac,x

Hvac,y
D

z
N11
1

5~Bvac
12 1Bvac

34 Rsurf!S Evac,x
(i)

Evac,y
(i) D , ~34!

where

Bvac
12 5S 0 1

21 0D and Bvac
34 5S 0 21

1 0 D . ~35!

According to Eqs.~29! and ~34!, the continuity of the tan-
gential components of the electric and magnetic fields at
vacuum and surface layer interface,zN1150, can be written
as

~I1Rsurf!S Evac,x
(i)

Evac,y
(i) D 5A~C N

121C N
34RN!S E Nx

(1)

E Ny
(2)D
8-6
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~Bvac
12 1Bvac

34 Rsurf!S Evac,x
(i)

Evac,y
(i) D 5B N

12~C N
122C N

34RN!S E Nx
(1)

E Ny
(2)D .

By eliminating the electric field vectors from this system
equations, it follows that

FN~I1Rsurf!5Bvac
12 1Bvac

34 Rsurf,

where

FN[B N
12~C N

122C N
34RN!~C N

121C N
34RN!21A 215DNA 21.

~36!

Thus for the surface reflectivity matrix one obtains

Rsurf5~FN2Bvac
34 !21~Bvac

12 2FN!. ~37!

The surface reflectivity matrixRsurf is therefore of the form
given in Eq.~33!, also see the Appendix. In spherical coo
dinates, one immediately obtains the complex reflectivity
the right- and left-handed circularly polarized light as

r̃ 65 r̃ xx7 i r̃ xy ,

which in turn determines the Kerr rotation angleuK and the
ellipticity eK ; see Eqs.~9! and ~10!.

4. Self-consistent layer-resolved permittivities

In order to calculate the corresponding dielectric ten
@Eq. ~23!# from the interlayer and intralayer permittivitie
defined in Eq.~19!, for a homogeneous, anisotropic layerp,
a linear system of equations

S ẽxx
p ẽxy

p

2 ẽxy
p ẽxx

p D S Epx

Epy
D 5 (

q51

N S ẽxx
pq ẽxy

pq

2 ẽxy
pq ẽxx

pqD S Eqx

Eqy
D

has to be solved; see Eq.~18!. Here forEWp one can take the
ansatz

S Epx

Epy
D[S Epx

Epy
D

z5z
p
11(dp/2)

5A@~C p
12!1/21~C p

34!1/2Rp#S E px
(1)

E py
(2)D ,

where, due to Eq.~30!,

~C p
k,k11!1/2[S e1 iq0ñpz

(k)
~dp/2! 0

0 e1 iq0ñpz
(k11)

~dp/2!
D ,

k51,3.

By using the continuity equation of the tangential comp
nents of the electric field at the boundaries@see Eqs.~27!,
~29! and ~34!#, one then obtains the layer-resolved perm
tivities as a weighted sum of the interlayer and intrala
permittivities defined in Eq.~19!,

S ẽxx
p ẽxy

p

2 ẽxy
p ẽxx

p D 5 (
q51

N

Wpqẽ pq, ~38!

where
14444
f

r
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-
r

Wpq5AS )
k50

N2q

Wq1kD S )
k50

N2p

Wp1kD 21

A 21, ~39!

with

Wp1k5~I1Rp1k!~Cp1k
12 1Cp1k

34 Rp1k!
21,

k51, . . . ,N2p

and

Wp5@~C p
12!1/21~C p

34!1/2Rp#~C p
121C p

34Rp!21, k50.

Because the 232 matricesWp1k containRp , C p
12, andC p

34,
which in turn depend on layer-resolved permittivitie
ẽmn

p (v), Eq. ~38! has to be solved iteratively.
The self-consistent procedure can be started by putting

232 weighting matricesWpq in Eq. ~39! to unity, i.e., by
neglecting the phase differences of the electromagn
waves between the lower and upper boundaries in each l
p:

ẽmn
p ~v!(0)5 (

q51

N

ẽmn
pq~v!. ~40!

These quantitiesẽmn
p (v)(0) can be used to calculateR p

(0) in
terms of Eqs.~31! and~32!. Improved layer-resolved permit
tivities then follow from Eq.~38!. This iterative procedure
has to be repeated until the difference in the old and n
layer-resolved permittivities of layerp is below a numerical
thresholdep :

maxu ẽmn
p ~v!( i 11)2 ẽmn

p ~v!( i )u<«p . ~41!

V. RESULTS AND DISCUSSIONS

From experiments is known that Pt substrates ‘‘prefer’’
fcc~111! orientation.42 Therefore in the present contribution
calculations for the layered systems Co/Pt5/Pt(111) and
Pt3/Co/Pt5/Pt(111) have been performed, with five Pt laye
serving as buffers43 to bulk fcc Pt. The Fermi level in Eqs
~3! and~4! is that of paramagnetic fcc Pt bulk~lattice param-
eter of 7.4137 a.u.!, which also serves as parent lattice,43 i.e.,
no layer relaxation is considered.

A. Paramagnetic fcc„111… Pt substrate

As mentioned above, in order to determine the surfa
reflectivity the permittivity tensor of the semi-infinite sub
strate has to be evaluated. As can be seen from Fig. 2, thxx
element of the permittivity tensor of the fcc~111! Pt substrate
shows a rather simple photon energy dependence. The
part of the permittivityẽxx(v) has a peak around 1 eV, whil
the imaginary part ofẽxx(v) exhibits an almost perfect hy
perbolic frequency dependence. The strong decay ofẽxx(v)
for photon energies in the vicinity of the static limit (v
50) can be easily understood in terms of Eqs.~19! and~40!;
also see Ref. 13: forv→0 the real part ofẽxx(v) must tend
to minus infinity whereas the imaginary part has to decrea
The xy element of the permittivity tensor for fcc~111! Pt
8-7
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is identical zero over the whole range of optical frequenc
a functional behavior that of course does not need to
illustrated.

B. Self-consistent layer-resolved permittivities

In terms of the substrate and the zeroth-order lay
resolved permittivities,@see Eq.~40!#, the iterative determi-
nation of the surface reflectivity matrix described above, a
provides self-consistent, layer-resolved permittivitiesẽmn

p (v)
in a very efficient manner: in less than five iterations
accuracy of«p510213 for each layerp @see Eq.~41!#, can be
achieved. In order to illustrate this procedure, in Fig. 3
imaginary part of the relative difference between the s
consistent and zeroth-order layer-resolvedxx element of the
permittivity tensor for Co/Pt5/Pt(111) with and without Pt
cap layers is displayed.

This relative difference is to be viewed as the relat
error made by using@according to Eq.~40!# the 232 matrix
technique with zeroth-order layer-resolved permittivities.
can be seen from Fig. 3, this relative error is layer, frequen
and system dependent. The higher the photon energy an
larger the layered system, the less exact are the zeroth-o
layer-resolved permittivities. However, for relatively sma
layered systems, the relative error made by using o
zeroth-order permittivities is typically below 5% forẽxx(v)
and less than 20% forẽxy(v). However, the resulting rela
tive error in the Kerr rotation angle and the ellipticity a
calculated by comparing the spectra, corresponding to
self-consistent and zeroth-order layer-resolved permittivit
is always less than 1%. Therefore, Eq.~40! can be consid-
ered as reasonably good approximation for layer-resol
permittivities.

FIG. 2. The permittivity for fcc~111! Pt bulk as a function of the
photon energyv. The real part of the permittivity is denoted by fu
circles, and the imaginary part by open circles.
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C. Polar Kerr effect for normal incidence

The systems investigated here refer to a Co monolaye
top of a fcc~111! Pt substrate, also considering the case
three Pt cap layers. As already mentioned, five Pt lay
serve as buffers to the semi-infinite host in order to ens
that the induced magnetic moments decrease monotonic
to zero in the paramagnetic Pt substrate.

The ab initio Kerr spectra obtained from self-consiste
layer-resolved permittivities, by applying the 232 matrix
technique, are shown in Fig. 4. Usually, in experiments
cap layers are deposited on top of Co in order to prevent
oxidation of the surface.44 By performing a separate, mag
netic anisotropy calculation,43 we have found that
Co/Pt(111) exhibits a perpendicular magnetization only
the presence of Pt cap layers. Therefore, for the polar K
spectra of the Co/Pt5/Pt(111) system shown in Fig. 4 th
polar geometry, namely, the perpendicular orientation of
magnetization is imposed.

Analyzing the Kerr spectra of the capped and uncap
systems in Fig. 4, several differences can be observed.
negative peak in the Kerr rotation angleuK at 3 eV in the
spectrum of Co/Pt5/Pt(111) almost disappears from th
spectrum in the case of the capped layered system. In
Kerr ellipticity the zero location at 2.8 eV, observed for th
uncapped system, is shifted to 2.5 eV for the capped sys
and simultaneously the infrared~IR! positive peak is shrunk
and moved toward lower photon energies. Besides these
tures, the sign of the ultraviolet~UV! peak in both the Kerr

FIG. 3. Imaginary part of the relative difference between t
self-consistent and zeroth-order layer-resolvedxx element of the
permittivity tensor as a function of the photon energyv for fcc
Co/Pt5 /Pt(111) ~top! and Pt3 /Co/Pt5 /Pt(111) ~bottom!. The data
represented by full~open! circles correspond to the first Pt layer o
top of ~under! the Co layer~stars!, the squares to the second laye
and the diamonds to the third layer. Open triangles down~up! de-
note the first~second! Pt layer data on top of a paramagnet
fcc~111! Pt substrate.
8-8
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rotation and ellipticity spectra is changed, and moves tow
lower photon energies, when the Co surface layer is cap
It was found~the results are not shown here! that this shift of
spectra increases with the number of Pt cap layers. Th
particular features can also be observed in the Kerr spe
obtained by using the two-media approach; see Fig. 5. In
two-media Kerr rotation spectrum, the negative IR peak a
eV in Co/Pt5/Pt(111) is shifted to about 1 eV in the case
a capped system.

Comparing the spectra in Fig. 4 with those in Fig. 5, it
evident that the theoretical Kerr spectra indeed depend on
macroscopic model used to describe the propagation of e
tromagnetic waves in the system. Because the systems in
tigated in here are much smaller than those used
experiments,44,45 a strict quantitative comparison with ex
perimental data cannot be made. However, a qualitative c
parison based on the well-known, general features of
Co/Pt experimental Kerr spectra is still possible:45 the Kerr
rotation angle shows~a! a small negative IR peak at 1.5 eV
which decreases in amplitude with decreasing Co thickn
and ~b! a high and broad negative UV peak, which mov
from 4.1 to 3.9 eV for increasing Co thickness. The Ke
ellipticity is characterized by~a! a shift of the zero location
at 1.5 eV~pure Co film! to 3.7 eV with decreasing Co thick
ness,~b! a positive peak around 3 eV, and~c! a shift of the
minimum at 4.9 eV in pure Co film toward higher photo
energies.

In the Kerr rotation spectra of the capped system show
Fig. 4, there is no negative IR peak around 1.5 eV, bu
negative UV exists at 5.5 eV. The Kerr ellipticity spectra

FIG. 4. The magneto-optical Kerr rotation angleuK(v) and el-
lipticity eK(v) for polar geometry and normal incidence as a fun
tion of the photon energyv obtained by applying the 232 matrix
technique for the self-consistent layer-resolved permittivities of
Co/Pt5/Pt(111) ~open circles! and Pt3 /Co/Pt5 /Pt(111) ~full
circles!.
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the capped system in Fig. 4 has a zero location at 2.5 eV,
positive peaks show up at 0.5, 3.5, 4, and 5 eV. These
tures suggest that, in the case of Pt3 /Co/Pt5 /Pt(111), the
Kerr spectra obtained by applying the 232 matrix technique
are typical of Co/Pt layered systems.

A similar investigation of the Kerr rotation spectra in Fi
5 reveals that, for the capped system, there are two nega
IR peaks at 1 and 1.5 eV and a negative UV peak aroun
eV. The Kerr ellipticity for the capped system in Fig. 5 show
a zero location at 1 eV~1.5 eV in case of a pure Co film!,
two positive peaks at 4 and 5 eV, and a small negative p
around 3 eV. All these features make the Kerr spectra
Pt3 /Co/Pt5 /Pt(111), described via the two-media approa
to resemble those of a pure Co film rather than those o
Co/Pt layered system.

Previous results, obtained by applying the 232 matrix
technique using as substrate permittivity that of the last
layer below the Co one,46 showed similar characteristics i
the Kerr spectra. Hence these features cannot be ascrib
the presence of the substrate, since the substrate is taken
account in the 232 matrix technique, while it is not in the
two-media approach. In another contribution,31 it was shown
that the optical conductivity of these systems is domina
by the contributions arising from the polarized Pt laye
Therefore, the pure Co filmlike spectra, obtained
Pt3 /Co/Pt5 /Pt(111) within the two-media approach, can
seen as an indication that a layered system cannot be
proximated by a homogeneous medium in which, with t
exception of the reflection at the surface, no other opti
reflections or interferences occur.

VI. SUMMARY

We have used the 232 matrix technique for the mos
frequently used experimental setup, namely, for polar geo

-

c

FIG. 5. As in Fig. 4, but here the Kerr spectra was obtained
applying the two-media approach for fcc Co/Pt5 /Pt(111) ~open
circles! and Pt3 /Co/Pt5 /Pt(111) ~full circles!.
8-9
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etry and normal incidence. This technique allows one to
count for all multiple reflections and optical interferences
a semi-infinite layered system. The Kerr rotation angle a
ellipticity can be directly obtained from the iteratively calc
lated surface reflectivity matrix, which in turn can be used
determine layer-resolved permittivities self-consistently. F
a free surface of layered systems, realisticab initio Kerr
spectra are obtained using the interlayer and intralayer c
ductivities as given by Luttinger’s formula within the spin
polarized relativistic screened Korringa-Kohn-Rostok
method.

A comparison of the theoretical Kerr spectra
Co/Pt5 /Pt(111) and Pt3 /Co/Pt5 /Pt(111) as obtained by ap
plying the 232 matrix technique and the two-media a
proach, indicates that the former technique provides typ
results for layered systems, whereas the latter approach t
to generate spectra specific for homogeneous films on to
a substrate.
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APPENDIX: SYMMETRY OF REFLECTIVITY MATRICES

Since for a semi-infinite substrate,R050, D05B 0
12, with

B 0
12 as given by Eq.~28!, according to Eq.~32!, the reflec-

tivity matrix of the first layer on top of the substrate is give
by

R15S r̃ 1 0

0 r̃ 18
D ,

where

r̃ 15
ñ1z

(1)2ñ0z
(1)

ñ1z
(1)1ñ0z

(1)
,

r̃ 185
ñ1z

(2)2ñ0z
(2)

ñ1z
(2)1ñ0z

(2)
.

Assuming that allp21 reflectivity matrices are of this
diagonal form, namely

Rj5S r̃ j 0

0 r̃ j8
D , j 51, . . . ,~p21!,

by taking into account Eqs.~28! and~30!, Eq. ~31! immedi-
ately yields

Dp215S 2 i d̃p21 2d̃p218

d̃p21 i d̃p218
D ,
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where

d̃p215ñp21z
(1) e2 i w̃p21

(1)
2e2 i w̃p21

(3)
r̃ p21

e2 i w̃p21
(1)

1e2 i w̃p21
(3)

r̃ p21

,

d̃p218 5ñp21z
(2)

e2 i w̃p21
(2)

2e2 i w̃p21
(4)

r̃ p218

e2 i w̃p21
(2)

1e2 i w̃p21
(4)

r̃ p218
.

The reflectivity matrix of layerp as obtained from the recur
sion relation@Eq. ~32!# is also found to be diagonal,

Rp5S r̃ p 0

0 r̃ p8
D ,

where

r̃ p5
ñpz

(1)2d̃p21

ñpz
(1)1d̃p21

,

r̃ p85
ñpz

(2)2d̃p218

ñpz
(2)2d̃p218

,

i.e., all the layer-resolved reflectivity matricesRj ( j
51, . . . ,N) are diagonal matrices, as anticipated in Eq.~26!.

In terms of the diagonal reflectivity matrix of the surfac
layer RN , and A and B N

12 as given by Eq.~28!, Eq. ~36!
reduces to

FN5
1

2 S i f̃ N 2 f̃ N8

f̃ N8 i f̃ N
D ,

where

f̃ N5d̃N8 2d̃N ,

f̃ N8 5d̃N8 1d̃N .

By usingFN , together with the matrices defined in Eq.~35!,
in Eq. ~37!, the resulting surface reflectivity matrix is of th
form anticipated in Eq.~33!, i.e.,

Rsurf5S r̃ xx r̃ xy

2 r̃ xy r̃ xx
D ,

where

r̃ xx5
2 f̃ N

2 1 f̃ N8
224

f̃ N
2 2 f̃ N8

214~ f̃ N8 21!
,

r̃ xy524i
f̃ N

f̃ N
2 2 f̃ N8

214~ f̃ N8 21!
.
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