Coherent Potential Approximation

November 29, 2009

1 Green-function matrices in the TB formalism

In the tight binding (TB) picture the matrix of a Hamiltonian H is in the form

$$
\begin{align*}
\underline{\underline{H}} & =\left\{\underline{H}^{i j}\right\}, \text { where } \tag{1}\\
\underline{\underline{H}}^{i j} & =\delta_{i j} \underline{\varepsilon}_{i}+{\underline{\gamma^{i j}}} . \tag{2}
\end{align*}
$$

Single and double underlines denote matrices in angular momentum space and site-angular momentum space, respectively. The size of each angular momentum block is determined by the dimension of the basis centered at each site i. In the case of $3 d$ transition metals e.g., the hybridized $3 d-4 s-4 p$ valence band spans a 9 -dimensional space (18 including spin). In many cases the on-site energy blocks $\underline{\varepsilon}_{i}$ in Eq. (2) are themselves diagonal, but this is not necessary. The hopping integrals $\underline{\gamma}^{i j}$ are strictly site-off-diagonal.

The resolvent (or static Green-function) matrix of a given system described by the Hamiltonian $\underline{\underline{H}}$ can be defined as

$$
\begin{equation*}
\underline{\underline{G}}(z):=(z-\underline{\underline{H}})^{-1} \tag{3}
\end{equation*}
$$

for any $z \in \mathbb{C}$ (at least where the inversion can be performed). Supposing that the solutions of the eigenvalue equation,

$$
\begin{equation*}
\underline{\underline{H}}|i\rangle=\varepsilon_{i}|i\rangle, \tag{4}
\end{equation*}
$$

are known, then the Hamiltonian matrix can be written as

$$
\begin{equation*}
\underline{\underline{H}}=\sum_{i} \varepsilon_{i}|i\rangle\langle i|, \tag{5}
\end{equation*}
$$

where i runs over all eigenfunctions. This implies the spectral decomposition of the matrix $\underline{\underline{G}}(z)$,

$$
\begin{equation*}
\underline{\underline{G}}(z)=\sum_{i} \frac{1}{z-\varepsilon_{i}}|i\rangle\langle i| . \tag{6}
\end{equation*}
$$

The fundamental analytic property of the resolvent,

$$
\begin{equation*}
\underline{\underline{G}}\left(z^{*}\right)=\underline{\underline{G}}(z)^{\dagger} \tag{7}
\end{equation*}
$$

is a corollary of this decomposition. Another fundamental identity can be derived from definition:

$$
\begin{equation*}
\frac{\mathrm{d} \underline{\underline{G}}(z)}{\mathrm{d} z}=-\underline{\underline{G}}(z)^{2} . \tag{8}
\end{equation*}
$$

Since $\underline{\underline{G}}(z)$ is undefined at real energies, ε_{i}, we have to approach the real arguments from the imaginary direction,

$$
\begin{align*}
\underline{\underline{G}}^{ \pm}(\varepsilon) & :=\lim _{\delta \rightarrow 0} \underline{\underline{G}(\varepsilon \pm \imath \delta)} \tag{9}\\
& =\sum_{i} \frac{1}{\varepsilon-\varepsilon_{i} \pm \imath 0}|i\rangle\langle i|, \tag{10}
\end{align*}
$$

for any $\varepsilon \in \mathbb{R}$. Note that $\underline{\underline{G}}^{+}(\varepsilon) \not \equiv \underline{\underline{G}}^{-}(\varepsilon)$ if ε is in the spectrum of $\underline{\underline{H}}$. Equation (7) implies

$$
\begin{equation*}
\left[\underline{\underline{G}}^{+}(\varepsilon)\right]^{\dagger}=\underline{\underline{G}}^{-}(\varepsilon) . \tag{11}
\end{equation*}
$$

The well-known identity of generalized functions,

$$
\begin{equation*}
\frac{1}{\varepsilon-\varepsilon_{i} \pm \imath 0}=\mathcal{P}\left(\frac{1}{\varepsilon-\varepsilon_{i}}\right) \mp \imath \pi \delta\left(\varepsilon-\varepsilon_{i}\right) \tag{12}
\end{equation*}
$$

leads to the relationship,

$$
\begin{align*}
\sum_{i} \delta\left(\varepsilon-\varepsilon_{i}\right)|i\rangle\langle i| & =-\frac{1}{2 \pi \imath}\left[\underline{\underline{G}}^{+}(\varepsilon)-\underline{\underline{G}}^{-}(\varepsilon)\right] \\
& =-\frac{1}{2 \pi \imath}\left[\underline{\underline{G}}^{+}(\varepsilon)-\left(\underline{\underline{G}}^{+}(\varepsilon)\right)^{\dagger}\right] \tag{13}
\end{align*}
$$

By composing the trace of (13), the density of states of the system, $n(\varepsilon)$, can be expressed from the Green function as

$$
\begin{gather*}
n(\varepsilon)=\sum_{i} \delta\left(\varepsilon-\varepsilon_{i}\right)=-\frac{1}{2 \pi \imath} \operatorname{Tr}\left[\underline{\underline{G}}^{+}(\varepsilon)-\left(\underline{\underline{G}}^{+}(\varepsilon)\right)^{\dagger}\right] \\
=-\frac{1}{2 \pi \imath}\left[\operatorname{Tr} \underline{\underline{G}}^{+}(\varepsilon)-\left(\operatorname{Tr} \underline{\underline{G}}^{+}(\varepsilon)\right)^{*}\right] \\
n(\varepsilon)=-\frac{1}{\pi} \operatorname{Im} \operatorname{Tr} \underline{\underline{G}}^{+}(\varepsilon)=\frac{1}{\pi} \operatorname{Im} \operatorname{Tr} \underline{\underline{G}}^{-}(\varepsilon) . \tag{14}
\end{gather*}
$$

The expectation value of an observable A at zero temperature can be calculated as

$$
\begin{align*}
\langle A\rangle & =\int_{\varepsilon_{b}}^{\varepsilon_{F}} \sum_{i} \delta\left(\varepsilon-\varepsilon_{i}\right)\langle i| A|i\rangle \mathrm{d} \varepsilon \tag{15}\\
& =\int_{\varepsilon_{b}}^{\varepsilon_{F}} \operatorname{Tr}\left(\sum_{i} \delta\left(\varepsilon-\varepsilon_{i}\right)|i\rangle\langle i| \underline{\underline{A}}\right) \mathrm{d} \varepsilon \tag{16}\\
\langle A\rangle & =-\frac{1}{\pi} \operatorname{Im} \int_{\varepsilon_{b}}^{\varepsilon_{F}} \operatorname{Tr}\left[\underline{\underline{A}}^{\underline{G}} \underline{\underline{G}}^{+}(\varepsilon)\right] \mathrm{d} \varepsilon \tag{17}
\end{align*}
$$

so $\underline{\underline{G}}(z)$ and the spectrum of $\underline{\underline{H}}$ contain the same information.

2 Perturbations with respect to a reference system

Suppose now that $\underline{\underline{H}}=\underline{\underline{H}}_{0}+\Delta \underline{\underline{H}}$, and $\underline{\underline{G}}_{0}=\left(z-\underline{\underline{H}}_{0}\right)^{-1}$ is the resolvent of the reference system. Then

$$
\begin{align*}
& \underline{\underline{G}}(z)=(z-\underline{\underline{H}})^{-1} \tag{18}\\
& \left(z-\underline{\underline{H}}_{0}-\Delta \underline{\underline{H}}\right) \underline{\underline{G}}(z)=\underline{\underline{I}} \\
& \left(\underline{\underline{I}}-\underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}}\right) \underline{\underline{G}}(z)=\underline{\underline{G}}_{0}(z) \tag{19}\\
& \underline{\underline{\underline{G}}}(z)=\left(\underline{\underline{I}}-\underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}}\right)^{-1} \underline{\underline{G}}_{0}(z)=\underline{\underline{G}}_{0}(z)\left(\underline{\underline{I}}-\Delta \underline{\underline{H}}_{\underline{\underline{G}}}^{0} 0(z)\right)^{-1} . \tag{20}
\end{align*}
$$

On the other hand, from Eq. (19),

$$
\begin{equation*}
\underline{\underline{G}}(z)=\underline{\underline{G}}_{0}(z)+\underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}} \underline{\underline{G}}(z) . \tag{21}
\end{equation*}
$$

This equation can be solved iteratively:

$$
\begin{align*}
& \underline{\underline{G}}^{(0)}(z)=\underline{\underline{G}}_{0}(z) \\
& \underline{\underline{G}}^{(1)}(z)=\underline{\underline{G}}_{0}(z)+\underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}}_{\underline{\underline{G}}}^{0}(z) \\
& \underline{\underline{G}}^{(2)}(z)=\underline{\underline{G}}_{0}(z)+\underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}} \underline{\underline{G}}_{0}(z)+\underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}}_{\underline{G}}^{0}(z) \Delta \underline{\underline{H}}_{\underline{\underline{G}}}^{0}(z) \\
& \vdots \\
& \underline{\underline{G}}(z)=\underline{\underline{G}}_{0}(z)+\underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}}_{\underline{\underline{G}}}^{0} 0(z)+\underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}}_{\underline{\underline{G}}}^{0}(z) \Delta \underline{\underline{H}}_{\underline{\underline{G}}}^{0} 0(z)+\ldots \tag{22}
\end{align*}
$$

This Dyson-equation can be rearranged as

$$
\begin{align*}
\underline{\underline{G}}(z) & =\underline{\underline{G}}_{0}(z)+\underline{\underline{G}}_{0}(z)\left[\Delta \underline{\underline{H}}+\Delta \underline{\underline{H}} \underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}}+\ldots\right] \underline{\underline{G}}_{0}(z) \\
& =\underline{\underline{G}}_{0}(z)+\underline{\underline{G}}_{0}(z) \underline{\underline{T}}(z) \underline{\underline{G}}_{0}(z), \tag{23}
\end{align*}
$$

where $\underline{\underline{T}}(z)$ is the so-called scattering matrix,

$$
\begin{align*}
\underline{\underline{T}}(z) & =\Delta \underline{\underline{H}}+\Delta \underline{\underline{H}} \underline{\underline{\underline{G}}}(z) \Delta \underline{\underline{H}} \\
& =\Delta \underline{\underline{H}}+\Delta \underline{\underline{H}} \underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}}+\Delta \underline{\underline{H}}_{\underline{G^{G}}}^{0}
\end{align*}(z) \Delta \underline{\underline{H}} \underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}}+\ldots .
$$

This can be rearranged to give

$$
\begin{equation*}
\underline{\underline{T}}(z)=\left[\underline{\underline{I}}-\Delta \underline{\underline{H}} \underline{\underline{G}}_{0}(z)\right]^{-1} \Delta \underline{\underline{H}}=\Delta \underline{\underline{H}}\left[\underline{\underline{I}}-\underline{\underline{G}}_{0}(z) \Delta \underline{\underline{H}}\right]^{-1} \tag{25}
\end{equation*}
$$

It can easily be shown that the $\underline{\underline{T}}$ matrix has similar analytical properties as the resolvent,

$$
\begin{align*}
& \underline{\underline{T}}\left(z^{*}\right)=\underline{\underline{T}}(z)^{\dagger}, \tag{26}\\
& \frac{\mathrm{d} \underline{\underline{T}}(z)}{\mathrm{d} z}=\underline{\underline{T}}(z) \frac{\mathrm{d} \underline{\underline{G}}_{0}(z)}{\mathrm{d} z} \underline{\underline{T}}(z), \text { and } \tag{27}\\
& \underline{\underline{T}}^{ \pm}(\varepsilon):=\lim _{\delta \rightarrow 0} \underline{\underline{T}}(\varepsilon \pm \imath \delta) \tag{28}
\end{align*}
$$

at real energies ε. By using equations (14) and (23), we get the density of states (DOS) of the perturbed system with respect to the reference system,

$$
\begin{equation*}
n(\varepsilon)=n_{0}(\varepsilon)-\frac{1}{\pi} \operatorname{Im} \operatorname{Tr}\left[\underline{\underline{G}}_{0}^{+}(\varepsilon) \underline{\underline{T}}^{+}(\varepsilon) \underline{\underline{G}}_{0}^{+}(\varepsilon)\right] . \tag{29}
\end{equation*}
$$

Using properties (8) and (27), then integrating with respect to energy, we arrive at the Lloydformula, which gives the integrated DOS of the perturbed system,

$$
\begin{equation*}
N(\varepsilon):=\int_{-\infty}^{\varepsilon} n\left(\varepsilon^{\prime}\right) \mathrm{d} \varepsilon^{\prime}=N_{0}(\varepsilon)+\frac{1}{\pi} \operatorname{Im} \operatorname{Tr} \ln \underline{\underline{T}}^{+}(\varepsilon) \tag{30}
\end{equation*}
$$

3 On-site impurities

Case of a single on-site impurity: $\Delta \underline{\underline{H}}_{i}=\left\{\Delta \underline{H}_{i} \delta_{i n} \delta_{i m}\right\}$,

$$
\begin{align*}
\underline{\underline{T}} & =\Delta \underline{\underline{H}}_{i}+\Delta \underline{\underline{H}}_{i} \underline{G}_{0} \Delta \underline{H}_{i}+\ldots \tag{31}\\
& =\left\{\left[\Delta \underline{H}_{i}+\Delta \underline{H}_{i} \underline{G}_{0}^{i i} \Delta \underline{H}_{i}+\ldots\right] \delta_{i n} \delta_{i m}\right\} \\
& =\left\{\underline{t}_{i} \delta_{i n} \delta_{i m}\right\}, \text { thus } \\
\underline{t}_{i} & =\Delta \underline{H}_{i}+\Delta \underline{H}_{i} \underline{G}_{0}^{i i} \underline{t}_{i} . \tag{32}
\end{align*}
$$

Now let $\Delta \underline{\underline{H}}$ be a sum of such on-site differences: $\Delta \underline{\underline{H}}=\sum_{i} \Delta \underline{\underline{H}}_{i}$. Then

$$
\begin{align*}
\underline{\underline{T}} & =\left(\sum_{i} \Delta \underline{\underline{H}}_{i}\right)+\left(\sum_{i} \Delta \underline{\underline{H}}_{i}\right) \underline{\underline{G}}_{0}\left(\sum_{i} \Delta \underline{\underline{H}}_{i}\right)+\ldots \\
& =\sum_{i} \Delta \underline{\underline{H}}_{i}+\sum_{i, j} \Delta \underline{\underline{H}}_{i} \underline{\underline{G}}_{0} \Delta \underline{\underline{H}}_{j}+\sum_{i, j, k} \Delta \underline{\underline{H}}_{i} \underline{\underline{G}}_{0} \Delta \underline{\underline{H}}_{j} \underline{\underline{G}}_{0} \Delta \underline{\underline{H}}_{k}+\ldots \tag{33}\\
\underline{T}^{n m} & =\Delta \underline{H}_{n} \delta_{n m}+\Delta \underline{H}_{n} \underline{G}_{0}^{n m} \Delta \underline{H}_{m}+\sum_{k} \Delta \underline{H}_{n} \underline{G}_{0}^{n k} \Delta \underline{H}_{k} \underline{G}_{0}^{k m} \Delta \underline{H}_{m}+\ldots \\
& =\Delta \underline{H}_{n} \delta_{n m}+\sum_{k} \Delta \underline{H}_{n} \underline{G}_{0}^{n k} \underline{T}^{k m} . \tag{34}
\end{align*}
$$

Both in operator and in matrix sense,

$$
\begin{align*}
\underline{\underline{T}} & =\sum_{i} \Delta \underline{\underline{H}}_{i}+\sum_{i, j} \Delta \underline{\underline{H}}_{i} \underline{\underline{G}}_{0} \Delta \underline{\underline{H}}_{j}+\ldots \tag{35}\\
& =\sum_{i}\left(\Delta \underline{\underline{H}}_{i}+\sum_{j} \Delta \underline{\underline{H}}_{i} \underline{\underline{G}}_{0} \Delta \underline{\underline{H}}_{j}+\ldots\right) \\
& =\sum_{i} \underline{\underline{Q}}_{i}, \text { where } \tag{36}
\end{align*}
$$

$$
\begin{align*}
& \underline{\underline{Q}}_{n}:=\Delta \underline{\underline{H}}_{n}+\sum_{m} \Delta \underline{\underline{H}}_{n} \underline{\underline{G}}_{0} \Delta \underline{\underline{H}}_{m}+\ldots \tag{37}\\
&=\Delta \underline{\underline{H}}_{n}+\Delta \underline{\underline{H}}_{n} \underline{\underline{G}}_{0} \sum_{m} \Delta \underline{\underline{Q}}_{m} \\
&=\Delta \underline{\underline{H}}_{n}+\Delta \underline{\underline{H}}_{n} \underline{\underline{G}}_{0} \underline{\underline{Q}}_{n}+\Delta \underline{\underline{H}}_{n} \underline{\underline{G}}_{0} \sum_{m(\neq n)} \Delta \underline{\underline{Q}}_{m} \\
& \Downarrow \\
&\left(\underline{\underline{I}}-\Delta \underline{\underline{H}}_{n} \underline{\underline{G}}_{0}\right) \underline{\underline{Q}}_{n}=\Delta \underline{\underline{H}}_{n}+\Delta \underline{\underline{H}}_{n} \underline{\underline{G}}_{0} \sum_{m(\neq n)} \Delta \underline{\underline{Q}}_{m} \\
& \underline{\underline{Q}}_{n}=\underline{\underline{t}}_{n}+\underline{\underline{t}}_{n} \underline{\underline{G}}_{0} \sum_{m(\neq n)} \underline{\underline{Q}}_{m}, \tag{38}
\end{align*}
$$

where $\underline{\underline{t}}_{n}$ is formally a single impurity T-matrix on the n-th site,

$$
\begin{equation*}
\underline{t}_{n}=\left\{\underline{t}_{n} \delta_{i n} \delta_{j n}\right\} \tag{39}
\end{equation*}
$$

Solving equation (38) iteratively,

$$
\begin{align*}
& \underline{\underline{Q}}_{n}^{(0)}:=\underline{\underline{t}}_{n} \tag{40}\\
& \underline{\underline{Q}}_{n}^{(1)}=\underline{\underline{t}}_{n}+\sum_{m(\neq n)} \underline{\underline{t}}_{n} \underline{\underline{G}}_{0} \underline{\underline{t}}_{m} \\
& \underline{\underline{Q}}_{n}^{(2)}=\underline{\underline{t}}_{n}+\sum_{m(\neq n)} \underline{\underline{t}}_{n} \underline{\underline{G}}_{0} \underline{\underline{t}}_{m}+\sum_{\substack{m(\neq n) \\
k(\neq m)}} \underline{\underline{t}}_{n} \underline{\underline{G}}_{0} \underline{t}_{m} \underline{\underline{G}}_{0} \underline{\underline{t}}_{k} \\
& \\
& \quad \vdots \tag{41}\\
& \quad \Downarrow \\
& \underline{\underline{Q}}_{n}=\underline{\underline{t}}_{n}+\sum_{m(\neq n)} \underline{\underline{t}}_{n} \underline{\underline{G}}_{0} \underline{\underline{t}}_{m}+\sum_{\substack{m(\neq n) \\
k(\neq m)}} \underline{\underline{t}}_{n} \underline{\underline{G}}_{0} \underline{\underline{t}}_{m} \underline{\underline{G}}_{0} \underline{\underline{t}}_{k}+\ldots
\end{align*}
$$

Using equation (37), we arrive at the multiple scattering expansion of the $\underline{\underline{T}}$ matrix,

$$
\begin{equation*}
\underline{\underline{T}}=\sum_{n} \underline{\underline{t}}_{n}+\sum_{n \neq m} \underline{\underline{t}}_{n} \underline{\underline{G}}_{0} \underline{\underline{t}}_{m}+\sum_{n \neq m \neq k} \underline{t}_{n} \underline{\underline{G}}_{0} \underline{\underline{t}}_{m} \underline{\underline{G}}_{0} \underline{t}_{k}+\ldots \tag{42}
\end{equation*}
$$

Since all $\underline{\underline{t}}_{n}$ have the structure of $\Delta \underline{\underline{H}}_{n}$,

$$
\begin{align*}
\underline{T}^{n m} & =\underline{t}_{n} \delta_{n m}+\left(1-\delta_{n m}\right) \underline{t}_{n} \underline{G}_{0}^{n m} \underline{t}_{m}+\sum_{\substack{k \\
(k \neq n) \\
(k \neq m)}} \underline{t}_{n} \underline{G}_{0}^{n k} \underline{t}_{k} \underline{G}_{0}^{k m} \underline{t}_{m}+\ldots \tag{43}\\
& =\underline{t}_{n} \delta_{n m}+\sum_{k} \underline{t}_{n} \underline{G}_{0}^{n k}\left(1-\delta_{n k}\right) \underline{T}^{k m} . \tag{44}
\end{align*}
$$

Defining the site-off-diagonal part of the reference system's resolvent,

$$
\begin{align*}
& \widehat{\underline{G}}_{0}:=\left\{\underline{G}_{0}^{n k}\left(1-\delta_{n k}\right)\right\}, \tag{45}\\
& \underline{\underline{T}}=\underline{\underline{t}}+\underline{\underline{t}}_{\underline{\widehat{G}^{G}}}^{0} \underline{\underline{T}} \\
& \Downarrow \\
& \underline{\underline{T}}=\left[\underline{\underline{t}}^{-1}+\widehat{\underline{G}}_{0}\right]^{-1} \tag{46}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& \underline{\underline{T}}=\underline{\underline{t}}+\underline{\underline{t}} \widehat{\underline{G}}_{0} \underline{\underline{t}}+\underline{\underline{t}} \widehat{\underline{G}}_{0} \underline{\underline{t}} \underline{\underline{G}}_{0} \underline{\underline{t}} \ldots, \text { so } \tag{47}\\
& \underline{\underline{G}}=\underline{\underline{G}}_{0}+\underline{\underline{G}}_{0} \underline{\underline{\underline{T}}} \underline{\underline{G}}_{0} \tag{48}
\end{align*}
$$

is given in terms of $\underline{\underline{G}}_{0}$ and $\underline{\underline{t}}$.

4 Chemically disordered systems

4.1 Binary alloys

Let's consider now a two-state disordered system, e.g. a two-component (binary) random alloy:

$$
\begin{equation*}
\Delta H_{i}=\xi_{i} \Delta H_{i}^{A}+\left(1-\xi_{i}\right) \Delta H_{i}^{B} \tag{49}
\end{equation*}
$$

where ξ_{i} are independent random variables with Bernoulli distribution:

$$
\xi_{i}=\left\{\begin{array}{l}
1 \\
0 \quad \text { with probability } \mathcal{P}_{i}(1):=c_{i} \\
0
\end{array} .\right.
$$

By definition the expected values are

$$
\begin{equation*}
\mathbb{E} \xi_{i} \equiv\left\langle\xi_{i}\right\rangle=c_{i}, \tag{50}
\end{equation*}
$$

thus the expected value of ΔH_{i} is

$$
\begin{equation*}
\left\langle\Delta H_{i}\right\rangle=\left\langle\xi_{i}\right\rangle \Delta H_{i}^{A}+\left\langle 1-\xi_{i}\right\rangle \Delta H_{i}^{B}=c_{i} \Delta H_{i}^{A}+\left(1-c_{i}\right) \Delta H_{i}^{B} . \tag{51}
\end{equation*}
$$

Independence means that the joint probability mass function of $\{\xi\}$ decomposes to the product of the individual probability mass functions:

$$
\begin{equation*}
\mathcal{P}(\{\xi\})=\prod_{i=1}^{N} \mathcal{P}_{i}\left(\xi_{i}\right) . \tag{52}
\end{equation*}
$$

Of course $\mathcal{P}(\{\xi\})$ is a probability, since trivially

$$
\begin{equation*}
\sum_{\{\xi\}} \mathcal{P}(\{\xi\})=\prod_{i}\left(\sum_{\xi_{i}=0}^{1} \mathcal{P}_{i}\left(\xi_{i}\right)\right)=1 . \tag{53}
\end{equation*}
$$

The configurational average of some physical quantity is then defined as

$$
\begin{equation*}
\langle F(\{\xi\})\rangle:=\sum_{\{\xi\}} \mathcal{P}(\{\xi\}) F(\{\xi\})=\sum_{\xi_{1}} \ldots \sum_{\xi_{N}} \mathcal{P}_{1}\left(\xi_{1}\right) \ldots \mathcal{P}_{N}\left(\xi_{N}\right) F\left(\xi_{1}, \ldots, \xi_{N}\right) . \tag{54}
\end{equation*}
$$

Since $\underline{\underline{G}}=\underline{\underline{G}}\left(\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right\}\right) \equiv \underline{\underline{G}}(\{\xi\})$, the mean of a physical quantity A in the TB picture is

$$
\begin{align*}
\langle A\rangle & =\left\langle-\frac{1}{\pi} \operatorname{Im} \int f(\varepsilon) \operatorname{Tr}[\underline{\underline{A}} \underline{\underline{G}}(\{\xi\})] \mathrm{d} \varepsilon\right\rangle \tag{55}\\
& =-\frac{1}{\pi} \operatorname{Im} \int f(\varepsilon) \operatorname{Tr}[\underline{\underline{A}}\langle\underline{\underline{G}}\rangle] \mathrm{d} \varepsilon \tag{56}
\end{align*}
$$

(where we suppressed the dependence of $\underline{\underline{G}}$ on the energy ε).

4.2 Coherent Potential Approximation

$$
\begin{align*}
\langle\underline{\underline{G}}\rangle & =\underline{\underline{G}}_{0}+\underline{\underline{G}}_{0}\langle\underline{\underline{T}}\rangle \underline{\underline{G}}_{0} \\
& =: \underline{\underline{G}}_{c}=\left(z-\underline{\underline{H}}_{c}\right)^{-1}, \tag{57}
\end{align*}
$$

where we defined the effective Hamiltonian $\underline{\underline{H}}_{c}$ often noted as $\underline{\underline{\Sigma}}_{c}$, the self-energy. This assumption is the coherent potential approximation (CPA). The $\overline{\overline{(5}} c^{c}$) CPA condition can only be satisfied if $\underline{\underline{H}}_{c}=\underline{\underline{H}}_{c}(z)$ is a function of the energy, but it is (by definition) configurationindependent.

Let us now choose our reference system to be $\underline{\underline{H}}_{c}$,

$$
\begin{gather*}
\underline{\underline{T}}=\underline{\underline{t}}+\underline{\underline{t}} \underline{\underline{\widehat{G}}}_{\underline{G}} \underline{\underline{t}}++\underline{\underline{t}} \underline{\underline{\widehat{G}}}_{\underline{\underline{t}}}^{\underline{t} \widehat{\widehat{G}}_{\underline{t}}^{\underline{t}}+\ldots} \tag{58}\\
\Delta \underline{\underline{H}}=\underline{\underline{H}}-\underline{\underline{H}}_{c}=\left\{\left(\underline{\underline{H}}_{i}-\underline{\underline{H}}_{c, i}\right) \delta_{i n} \delta_{i m}\right\} \tag{59}
\end{gather*}
$$

where $\underline{H}_{c, i}$ are to be determined. A condition is given by

$$
\begin{gather*}
\langle\underline{\underline{G}}\rangle=\underline{\underline{G}}_{c}=\underline{\underline{G}}_{c}+\underline{\underline{G}}_{c}\langle\underline{\underline{T}}\rangle \underline{\underline{G}}_{c} \tag{60}\\
\Downarrow \\
\langle\underline{\underline{T}}\rangle=0 \tag{61}\\
\langle\underline{\underline{t}}\rangle+\left\langle\underline{\underline{t}}_{\underline{\underline{t}}}^{\underline{\underline{G}}}\right. \tag{62}\\
\underline{\underline{t}} \underline{\underline{t}}\rangle+\ldots=0 .
\end{gather*}
$$

Single-site CPA:

$$
\begin{equation*}
\langle\underline{\underline{t}}\rangle:=0 \text {. } \tag{63}
\end{equation*}
$$

Considering this,

$$
\begin{align*}
&\left\langle\underline{t}_{n} \widehat{\widehat{G}}_{c}^{n m} \underline{t}_{m}\right\rangle \tag{64}\\
& \sum_{\substack{k \neq n \\
k \neq m}}\left\langle\underline{t}_{n} \widehat{\underline{G}}_{n}\right\rangle \widehat{\widehat{G}}_{c}^{n m}\left\langle\underline{t}_{k} \widehat{\underline{G}}_{c}^{k m}\right\rangle\left.\underline{t}_{m}\right\rangle=0 \tag{65}\\
& \sum_{\substack{k \neq n \\
k \neq m}}\left\langle\underline{t}_{n} \widehat{\underline{G}}_{c}^{n k}\left\langle\underline{t}_{k}\right\rangle \widehat{\underline{G}}_{c}^{k m} \underline{t}_{m}\right\rangle=0
\end{align*}
$$

Thus eq. (63) satisfies the condition set by eq. (61) up to fourth order in \underline{t}. Since

$$
\begin{equation*}
\underline{t}_{i}=\xi_{i} \underline{\underline{L}}_{i}^{A}+\left(1-\xi_{i}\right) \underline{t}_{i}^{B} \tag{66}
\end{equation*}
$$

eq. (63) reads as

$$
\begin{equation*}
\left\langle\underline{t}_{i}\right\rangle=c_{i} \underline{t}_{i}^{A}+\left(1-c_{i}\right) \underline{t}_{i}^{B}=0 . \tag{67}
\end{equation*}
$$

This is in fact a system of equations for $\underline{\underline{H}}_{c}$, because

$$
\begin{align*}
\underline{t}_{i}^{\alpha} & =\left(\underline{I}-\Delta \underline{H}_{i}^{\alpha} \underline{G}_{c}^{i i}\right)^{-1} \Delta H_{i}^{\alpha}, \text { where } \tag{68}\\
\Delta \underline{H}_{i}^{\alpha} & =\underline{H}_{i}^{\alpha}-\underline{H}_{c, i}, \quad(\alpha=A, B) \tag{69}
\end{align*}
$$

and $\underline{G}_{c}^{i i}$ can be determined from equation (57).

