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1 Green-function matrices in the TB formalism

In the tight binding (TB) picture the matrix of a Hamiltonian H is in the form

H =
{
H ij
}

, where (1)

H ij = δijεi + γij . (2)

Single and double underlines denote matrices in angular momentum space and site-angular
momentum space, respectively. The size of each angular momentum block is determined by
the dimension of the basis centered at each site i. In the case of 3d transition metals e.g., the
hybridized 3d-4s-4p valence band spans a 9-dimensional space (18 including spin). In many
cases the on-site energy blocks εi in Eq. (2) are themselves diagonal, but this is not necessary.
The hopping integrals γij are strictly site-off-diagonal.

The resolvent (or static Green-function) matrix of a given system described by the Hamil-
tonian H can be defined as

G(z) :=
(
z −H

)−1
(3)

for any z ∈ C (at least where the inversion can be performed). Supposing that the solutions of
the eigenvalue equation,

H |i〉 = εi |i〉 , (4)

are known, then the Hamiltonian matrix can be written as

H =
∑
i

εi |i〉 〈i| , (5)

where i runs over all eigenfunctions. This implies the spectral decomposition of the matrix
G(z),

G(z) =
∑
i

1

z − εi
|i〉 〈i| . (6)

The fundamental analytic property of the resolvent,

G (z∗) = G(z)† (7)
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is a corollary of this decomposition. Another fundamental identity can be derived from defini-
tion:

dG(z)

dz
= −G(z)2 . (8)

Since G(z) is undefined at real energies, εi, we have to approach the real arguments from the
imaginary direction,

G±(ε) := lim
δ→0

G (ε± ıδ) (9)

=
∑
i

1

ε− εi ± ı0
|i〉 〈i| , (10)

for any ε ∈ R. Note that G+(ε) 6≡ G−(ε) if ε is in the spectrum of H. Equation (7) implies[
G+(ε)

]†
= G−(ε) . (11)

The well-known identity of generalized functions,

1

ε− εi ± ı0
= P

(
1

ε− εi

)
∓ ıπδ (ε− εi) , (12)

leads to the relationship,∑
i

δ (ε− εi) |i〉 〈i| = −
1

2πı

[
G+(ε)−G−(ε)

]
= − 1

2πı

[
G+(ε)−

(
G+(ε)

)†]
. (13)

By composing the trace of (13), the density of states of the system, n (ε), can be expressed
from the Green function as

n (ε) =
∑
i

δ (ε− εi) = − 1

2πı
Tr
[
G+(ε)−

(
G+(ε)

)†]
= − 1

2πı

[
TrG+(ε)−

(
TrG+(ε)

)∗]
n (ε) = − 1

π
ImTrG+(ε) =

1

π
ImTrG−(ε) . (14)

The expectation value of an observable A at zero temperature can be calculated as

〈A〉 =

εF∫
εb

∑
i

δ (ε− εi) 〈i|A |i〉 dε (15)

=

εF∫
εb

Tr

(∑
i

δ (ε− εi) |i〉 〈i|A

)
dε (16)

〈A〉 = − 1

π
Im

εF∫
εb

Tr
[
AG+(ε)

]
dε , (17)

so G(z) and the spectrum of H contain the same information.
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2 Perturbations with respect to a reference system

Suppose now that H = H
0

+ ∆H, and G
0

=
(
z −H

0

)−1

is the resolvent of the reference

system. Then

G(z) =
(
z −H

)−1
(18)(

z −H
0
−∆H

)
G(z) = I(

I −G
0
(z) ∆H

)
G(z) = G

0
(z) (19)

G(z) =
(
I −G

0
(z) ∆H

)−1

G
0
(z) = G

0
(z)
(
I −∆H G

0
(z)
)−1

. (20)

On the other hand, from Eq. (19),

G(z) = G
0
(z) +G

0
(z) ∆H G(z) . (21)

This equation can be solved iteratively:

G(0)(z) = G
0
(z)

G(1)(z) = G
0
(z) +G

0
(z) ∆H G

0
(z)

G(2)(z) = G
0
(z) +G

0
(z) ∆H G

0
(z) +G

0
(z) ∆H G

0
(z) ∆H G

0
(z)

...

G(z) = G
0
(z) +G

0
(z) ∆H G

0
(z) +G

0
(z) ∆H G

0
(z) ∆H G

0
(z) + . . . (22)

This Dyson-equation can be rearranged as

G(z) =G
0
(z) +G

0
(z)
[
∆H + ∆H G

0
(z) ∆H + . . .

]
G

0
(z)

=G
0
(z) +G

0
(z)T (z)G

0
(z) , (23)

where T (z) is the so-called scattering matrix,

T (z) = ∆H + ∆H G(z) ∆H

= ∆H + ∆H G
0
(z) ∆H + ∆H G

0
(z) ∆H G

0
(z) ∆H + . . .

= ∆H + ∆H G
0
T (z) . (24)

This can be rearranged to give

T (z) =
[
I −∆H G

0
(z)
]−1

∆H = ∆H
[
I −G

0
(z) ∆H

]−1

. (25)

It can easily be shown that the T matrix has similar analytical properties as the resolvent,

T (z∗) =T (z)† , (26)

dT (z)

dz
=T (z)

dG
0
(z)

dz
T (z) , and (27)

T±(ε) := lim
δ→0

T (ε± ıδ) (28)
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at real energies ε. By using equations (14) and (23), we get the density of states (DOS) of the
perturbed system with respect to the reference system,

n(ε) = n0(ε)−
1

π
ImTr

[
G+

0
(ε)T+(ε)G+

0
(ε)
]
. (29)

Using properties (8) and (27), then integrating with respect to energy, we arrive at the Lloyd-
formula, which gives the integrated DOS of the perturbed system,

N(ε) :=

ε∫
−∞

n (ε′) dε′ = N0(ε) +
1

π
ImTr lnT+(ε) . (30)

3 On-site impurities

Case of a single on-site impurity: ∆H
i

= {∆H iδinδim},

T =∆H
i
+ ∆H

i
G

0
∆H

i
+ . . . (31)

=
{[

∆H i + ∆H iG
ii
0 ∆H i + . . .

]
δinδim

}
= {tiδinδim} , thus

ti =∆H i + ∆H iG
ii
0 ti. (32)

Now let ∆H be a sum of such on-site differences: ∆H =
∑
i

∆H
i
. Then

T =

(∑
i

∆H
i

)
+

(∑
i

∆H
i

)
G

0

(∑
i

∆H
i

)
+ . . .

=
∑
i

∆H
i
+
∑
i,j

∆H
i
G

0
∆H

j
+
∑
i,j,k

∆H
i
G

0
∆H

j
G

0
∆H

k
+ . . . (33)

T nm =∆Hnδnm + ∆HnG
nm
0 ∆Hm +

∑
k

∆HnG
nk
0 ∆HkG

km
0 ∆Hm + . . .

=∆Hnδnm +
∑
k

∆HnG
nk
0 T km. (34)

Both in operator and in matrix sense,

T =
∑
i

∆H
i
+
∑
i,j

∆H
i
G

0
∆H

j
+ . . . (35)

=
∑
i

(
∆H

i
+
∑
j

∆H
i
G

0
∆H

j
+ . . .

)
=
∑
i

Q
i
, where (36)
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Q
n

:=∆H
n

+
∑
m

∆H
n
G

0
∆H

m
+ . . . (37)

=∆H
n

+ ∆H
n
G

0

∑
m

∆Q
m

=∆H
n

+ ∆H
n
G

0
Q
n

+ ∆H
n
G

0

∑
m(6=n)

∆Q
m

⇓(
I −∆H

n
G

0

)
Q
n

=∆H
n

+ ∆H
n
G

0

∑
m(6=n)

∆Q
m

Q
n

=t
n

+ t
n
G

0

∑
m(6=n)

Q
m
, (38)

where t
n

is formally a single impurity T -matrix on the n-th site,

t
n

= {tnδinδjn} . (39)

Solving equation (38) iteratively,

Q(0)

n
:=t

n
(40)

Q(1)

n
=t

n
+
∑
m(6=n)

t
n
G

0
t
m

Q(2)

n
=t

n
+
∑
m(6=n)

t
n
G

0
t
m

+
∑
m(6=n)
k(6=m)

t
n
G

0
t
m
G

0
t
k

...

⇓

Q
n

=t
n

+
∑
m(6=n)

t
n
G

0
t
m

+
∑
m(6=n)
k(6=m)

t
n
G

0
t
m
G

0
t
k

+ . . . (41)

Using equation (37), we arrive at the multiple scattering expansion of the T matrix,

T =
∑
n

t
n

+
∑
n6=m

t
n
G

0
t
m

+
∑

n6=m6=k

t
n
G

0
t
m
G

0
t
k

+ . . . (42)

Since all t
n

have the structure of ∆H
n
,

T nm =tnδnm + (1− δnm) tnG
nm
0 tm +

∑
k

(k 6=n)
(k 6=m)

tnG
nk
0 tkG

km
0 tm + . . . (43)

=tnδnm +
∑
k

tnG
nk
0 (1− δnk)T km. (44)

Defining the site-off-diagonal part of the reference system’s resolvent,

Ĝ
0

:=
{
Gnk

0 (1− δnk)
}
, (45)

T = t+ t Ĝ
0
T

⇓

T =
[
t−1 + Ĝ

0

]−1

(46)
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On the other hand,

T =t+ t Ĝ
0
t+ t Ĝ

0
t Ĝ

0
t . . . , so (47)

G =G
0

+G
0
T G

0
(48)

is given in terms of G
0

and t.

4 Chemically disordered systems

4.1 Binary alloys

Let’s consider now a two-state disordered system, e.g. a two-component (binary) random alloy:

∆Hi = ξi∆H
A
i + (1− ξi) ∆HB

i , (49)

where ξi are independent random variables with Bernoulli distribution:

ξi =

{
1 with probability Pi (1) := ci
0 with probability Pi (0) = 1− ci

.

By definition the expected values are

Eξi ≡ 〈ξi〉 = ci, (50)

thus the expected value of ∆Hi is

〈∆Hi〉 = 〈ξi〉∆HA
i + 〈1− ξi〉∆HB

i = ci∆H
A
i + (1− ci) ∆HB

i . (51)

Independence means that the joint probability mass function of {ξ} decomposes to the product
of the individual probability mass functions:

P ({ξ}) =
N∏
i=1

Pi (ξi) . (52)

Of course P ({ξ}) is a probability, since trivially

∑
{ξ}

P ({ξ}) =
∏
i

(
1∑

ξi=0

Pi (ξi)

)
= 1. (53)

The configurational average of some physical quantity is then defined as

〈F ({ξ})〉 :=
∑
{ξ}

P ({ξ})F ({ξ}) =
∑
ξ1

. . .
∑
ξN

P1 (ξ1) . . .PN (ξN)F (ξ1, . . . , ξN) . (54)

Since G = G ({ξ1, ξ2, . . . , ξN}) ≡ G ({ξ}), the mean of a physical quantity A in the TB picture
is

〈A〉 =

〈
− 1

π
Im

∫
f(ε) Tr

[
AG ({ξ})

]
dε

〉
(55)

=− 1

π
Im

∫
f(ε) Tr

[
A
〈
G
〉]

dε (56)

(where we suppressed the dependence of G on the energy ε).
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4.2 Coherent Potential Approximation

〈
G
〉

= G
0

+G
0

〈
T
〉
G

0

=: G
c

=
(
z −H

c

)−1

, (57)

where we defined the effective Hamiltonian H
c

often noted as Σ
c
, the self-energy. This as-

sumption is the coherent potential approximation (CPA). The (57) CPA condition can only
be satisfied if H

c
= H

c
(z) is a function of the energy, but it is (by definition) configuration-

independent.
Let us now choose our reference system to be H

c
,

T =t+ t Ĝ
c
t+ +t Ĝ

c
t Ĝ

c
t+ . . . (58)

∆H =H −H
c

=
{(
H i −Hc,i

)
δinδim

}
, (59)

where Hc,i are to be determined. A condition is given by〈
G
〉

=G
c

= G
c

+G
c

〈
T
〉
G
c

(60)

⇓〈
T
〉

= 0 (61)

〈
t
〉

+
〈
t Ĝ

c
t
〉

+ . . . = 0. (62)

Single-site CPA: 〈
t
〉

:= 0 . (63)

Considering this, 〈
tnĜ

nm

c tm

〉
=
n6=m
〈tn〉 Ĝ

nm

c 〈tm〉 =0 (64)∑
k 6=n
k 6=m

〈
tnĜ

nk

c tkĜ
km

c tm

〉
=
∑
k 6=n
k 6=m

〈
tnĜ

nk

c 〈tk〉 Ĝ
km

c tm

〉
=0. (65)

Thus eq. (63) satisfies the condition set by eq. (61) up to fourth order in t. Since

ti = ξit
A
i + (1− ξi) tBi , (66)

eq. (63) reads as

〈ti〉 = cit
A
i + (1− ci) tBi = 0 . (67)

This is in fact a system of equations for H
c
, because

tαi =
(
I −∆Hα

i G
ii
c

)−1
∆Hα

i , where (68)

∆Hα
i = Hα

i −Hc,i, (α = A, B) (69)

and Gii
c can be determined from equation (57).
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