1. Consider the second free-electron band of a simple cubic lattice along the ΓL line in the Brilloiun zone, i.e., for $\mathbf{k}=\frac{\pi}{a} \xi(1,1,1) \quad \xi \in(0,1)$. This three-fold degenerate band is related to the translation vectors of the reciprocal lattice, $\mathbf{K}_{1}=\frac{2 \pi}{a}(-1,0,0), \mathbf{K}_{2}=\frac{2 \pi}{a}(0,-1,0)$, and $\mathbf{K}_{3}=\frac{2 \pi}{a}(0,0,-1)$. How will be the degeneracy lifted in the presence of a crystal potential? Describe the symmetry of the corresponding Bloch-functions!
2. Prove that the time-inversion can be represented by $T=e^{i \theta} \sigma_{y} C$, where $\theta \in \mathbb{R}$ and C stands for the complex conjugation.
3. Let us denote the two degenerate (orthonormal) Bloch-functions of a crystal with both time- and space-inversion symmetry by $\psi_{\mathbf{k}}^{(\mu)}(\mu=1,2)$. Let us construct the orthonormal linear combinations,

$$
\begin{align*}
\psi_{\mathbf{k}}^{(+)} & =c_{1} \psi_{\mathbf{k}}^{(1)}+c_{2} \psi_{\mathbf{k}}^{(2)} \tag{1}\\
\psi_{\mathbf{k}}^{(-)} & =-c_{2}^{*} \psi_{\mathbf{k}}^{(1)}+c_{1}^{*} \psi_{\mathbf{k}}^{(2)} \tag{2}
\end{align*}
$$

$c_{1}, c_{2} \in \mathbb{C},\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1$, such that

$$
\begin{equation*}
\left\langle\psi_{\mathbf{k}}^{(+/-)}\right| \sigma_{x}\left|\psi_{\mathbf{k}}^{(+/-)}\right\rangle=\left\langle\psi_{\mathbf{k}}^{(+/-)}\right| \sigma_{y}\left|\psi_{\mathbf{k}}^{(+/-)}\right\rangle=0 \tag{3}
\end{equation*}
$$

Give the expressions for c_{1} and c_{2} and show that

$$
\begin{gather*}
\left\langle\psi_{\mathbf{k}}^{(+/-)}\right| \sigma_{z}\left|\psi_{\mathbf{k}}^{(+/-)}\right\rangle= \pm P_{\mathbf{k}} \tag{4}\\
0 \leq P_{\mathbf{k}} \leq 1 \tag{5}
\end{gather*}
$$

4. Consider a one-dimensional lattice with two atoms (A, B) per unit cell and lattice constant, a. The simplest two-band model of this system is described by the following tight-binding Hamiltonian,

$$
\begin{equation*}
H_{i j}^{\alpha \beta}=\varepsilon_{\alpha} \delta_{\alpha \beta} \delta_{i j}+t_{1}\left(1-\delta_{\alpha \beta}\right) \delta_{i j}+t_{2}\left(\delta_{\alpha A} \delta_{\beta B} \delta_{i, j+1}+\delta_{\alpha B} \delta_{\beta A} \delta_{i+1, j}\right) \tag{6}
\end{equation*}
$$

where i and j denote lattice vectors (cells), $\alpha, \beta=A$ or B label atoms within a cell, ε_{α} are on-site energies, while t_{1} and t_{2} are the intracell and intercell hopping parameters, respectively. For simplicity, let's take $\varepsilon_{A}=\varepsilon_{B}=0$. Determine the dispersion relation of this model and give the condition for a gap in the spectrum!

Hint: The eigenvalue equation of the Hamiltonian

$$
\begin{equation*}
\sum_{\beta j} H_{i j}^{\alpha \beta} \varphi_{\beta j}=\varepsilon \varphi_{\alpha i} \tag{7}
\end{equation*}
$$

can be written as

$$
\begin{align*}
& \varepsilon \varphi_{A i}-t_{1} \varphi_{B i}-t_{2} \varphi_{B, i-1}=0 \tag{8}\\
& \varepsilon \varphi_{B i}-t_{1} \varphi_{A i}-t_{2} \varphi_{A, i+1}=0 \tag{9}
\end{align*}
$$

for $i \in \mathbb{Z}$. Use the Bloch-theorem for the eigenvectors $\varphi_{\alpha i}!$
5. Let's consider a semi-infinite chain in the above model,

$$
\begin{align*}
& \varepsilon \varphi_{A i}-t_{1} \varphi_{B i}-t_{2} \varphi_{B, i-1}=0 \tag{10}\\
& \varepsilon \varphi_{B i}-t_{1} \varphi_{A i}-t_{2} \varphi_{A, i+1}=0 \tag{11}
\end{align*}
$$

for $i<0$ and

$$
\begin{align*}
\varepsilon \varphi_{A 0}-t_{1} \varphi_{B 0}-t_{2} \varphi_{B,-1} & =0 \tag{12}\\
\varepsilon \varphi_{B 0}-t_{1} \varphi_{A 0} & =0 \tag{13}
\end{align*}
$$

Derive the condition for which a localized surface state, $\varphi_{\alpha, i-1}=e^{-i k a-\kappa a} \varphi_{\alpha, i}(\kappa>0)$, exists! Note that the energy of this state lies in the gap of the bulk states.
6. Let H^{0} denote the non-relativistic Hamilton operator of a non-spinpolarized system that has a twofold degenerate band with the dispersion relation, $\varepsilon_{0}(\mathbf{k})$. (We know that $\varepsilon_{0}(\mathbf{k})$ is an even function of \mathbf{k}.) Treating the spin-orbit coupling,

$$
\begin{equation*}
H_{S O}=\frac{\hbar}{4 m^{2} c^{2}}(\nabla V \times \mathbf{p}) \boldsymbol{\sigma} \tag{14}
\end{equation*}
$$

within first-order perturbation theory, the matrix of perturbation can be written as

$$
\begin{equation*}
H_{S O}(\mathbf{k})=\boldsymbol{\alpha}(\mathbf{k}) \boldsymbol{\sigma} \tag{15}
\end{equation*}
$$

Give the expression of $\boldsymbol{\alpha}(\mathbf{k})$ and prove that it is an odd function of \mathbf{k} !
7. Up to first order in \mathbf{k}, a general expression of the Rashba Hamiltonian of a non-magnetic surface is given by

$$
\begin{equation*}
H_{R}(\mathbf{k})=\sum_{i, j=x, y} \alpha_{i j} k_{i} \sigma_{j} \tag{16}
\end{equation*}
$$

Which of the parameters $\alpha_{i j}$ must vanish in case of $C_{2 v}$ point-group symmetry? Solve the eigenvalue problem,

$$
\begin{equation*}
\left[\varepsilon_{0}+\frac{\hbar^{2} k_{x}^{2}}{2 m_{x}^{*}}+\frac{\hbar^{2} k_{y}^{2}}{2 m_{y}^{*}}+H_{R}(\mathbf{k})\right] \psi_{\mathbf{k}}=\varepsilon_{\mathbf{k}} \psi_{\mathbf{k}} \tag{17}
\end{equation*}
$$

and calculate the spin-polarization, $\mathbf{P}_{\mathbf{k}}=\left\langle\psi_{\mathbf{k}}\right| \boldsymbol{\sigma}\left|\psi_{\mathbf{k}}\right\rangle$!

