1. Prove that the expectation value of a Hermitean operator \mathcal{A},

$$
\begin{equation*}
A=\sum_{n} f\left(\varepsilon_{n}\right)\left\langle\varphi_{n}\right| \mathcal{A}\left|\varphi_{n}\right\rangle, \tag{1}
\end{equation*}
$$

where $f(\varepsilon)=1 /\left(1+e^{(\varepsilon-\mu) / k_{B} T}\right)$ is the Fermi distribution, μ is the chemical potential, and $H\left|\varphi_{n}\right\rangle=\varepsilon_{n}\left|\varphi_{n}\right\rangle$, can be expressed as

$$
\begin{equation*}
A=-\frac{1}{\pi} \operatorname{Im} \int_{\curvearrowright} d z f(z) \operatorname{Tr}(\mathcal{A G}(z))-2 k_{B} T \sum_{\operatorname{Im} z_{k}>0} \operatorname{Re} \operatorname{Tr}\left(\mathcal{A G}\left(z_{k}\right)\right) \tag{2}
\end{equation*}
$$

where \curvearrowright denotes a contour in the upper complex semiplane starting end ending at $-\infty$ and ∞, respectively, and $z_{k}=\mu+i(2 k+1) \pi k_{B} T \quad(k \in \mathbb{Z})$ are the poles of $f(z)$ (fermionic Matsubara poles) lying between the real axis and \curvearrowright.
2. Let's consider a solid system described by a tight-binding Hamiltonian matrix, $\underline{\underline{H}}=\left\{\underline{H}_{i j}\right\}$. The atom at site i is replaced by an other atom, characterized by the on-site matrix, $\underline{H}_{i}^{\prime}$, while the off-site blocks of the Hamiltonian are supposed to be unchanged.
(a) Prove that the corresponding site-diagonal block of the resolvent matrix is

$$
\begin{equation*}
\underline{G}_{i i}^{\prime}(z)=\underline{G}_{i i}(z)\left(\underline{I}-\Delta \underline{H}_{i} \underline{G}_{i i}(z)\right)^{-1} \tag{3}
\end{equation*}
$$

where $\Delta \underline{H}_{i}=\underline{H}_{i}^{\prime}-\underline{H}_{i}$ and $\underline{G}_{i i}(z)$ is the site-diagonal block of the resolvent matrix of the host system.
(b) Show that the single-site CPA condition for the t-matrices is equivalent with the following condition for the resolvent matrices,

$$
\begin{equation*}
\underline{G}_{i i}^{c}(z)=c \underline{G}_{i i}^{A}(z)+(1-c) \underline{G}_{i i}^{B}(z), \tag{4}
\end{equation*}
$$

where $\underline{G}_{i i}^{\alpha}(z)$ denotes the site-diagonal block of the resolvent matrix when a single impurity of type $\alpha \in\{A, B\}$ is embedded into the effective medium at site i.
(The exercize was in part solved during the course.)
3. The nearest neighbor tight-binding Hamiltonian for a single-band system on a simple onedimensional lattice with lattice constant a is given by

$$
\begin{equation*}
H_{i j}=\varepsilon_{0} \delta_{i j}+V\left(\delta_{i, j+1}+\delta_{i, j-1}\right), \tag{5}
\end{equation*}
$$

where i and j denote sites of the lattice $(V>0)$. Prove that, for $\operatorname{Im} z>0$ and $\varepsilon_{0}-2 V<\varepsilon \equiv$ $\operatorname{Re} z<\varepsilon_{0}+2 V$, the real lattice representation of the resolvent can be expressed as

$$
\begin{equation*}
G_{i j}(z)=\frac{\left(\frac{z-\varepsilon_{0}}{2 V}-\sqrt{\left(\frac{z-\varepsilon_{0}}{2 V}\right)^{2}-1}\right)^{|i-j|}}{2 V \sqrt{\left(\frac{z-\varepsilon_{0}}{2 V}\right)^{2}-1}} \tag{6}
\end{equation*}
$$

consequently,

$$
\begin{equation*}
G_{i i}(z)=\frac{1}{\sqrt{\left(z-\varepsilon_{0}\right)^{2}-4 V^{2}}} \tag{7}
\end{equation*}
$$

and the density of states per lattice site is

$$
\begin{equation*}
D(\varepsilon)=\frac{1}{\pi \sqrt{4 V^{2}-\left(\varepsilon-\varepsilon_{0}\right)^{2}}}! \tag{8}
\end{equation*}
$$

(The exercize was in part solved during the course.)
4. Show that the single-site CPA condition for the above mentioned system can be written in the form,

$$
\begin{equation*}
\varepsilon_{c}=c \varepsilon_{A}+(1-c) \varepsilon_{B}-\left(\varepsilon_{A}-\varepsilon_{c}(z)\right)\left(\varepsilon_{B}-\varepsilon_{c}(z)\right) G_{c}(z) \tag{9}
\end{equation*}
$$

where c is the concentration of component A, ε_{A} and ε_{B} are the on-site energies for components A and $B, \varepsilon_{c}(z)$ is the self-energy for the effective medium and

$$
\begin{equation*}
G_{c}(z)=\frac{1}{\sqrt{\left(z-\varepsilon_{c}(z)\right)^{2}-4 V^{2}}}! \tag{10}
\end{equation*}
$$

5. Let us fix the on-site energies in the above example as

$$
\begin{equation*}
\varepsilon_{A}=\varepsilon_{0} \quad \varepsilon_{B}=-\varepsilon_{0} \tag{11}
\end{equation*}
$$

and introduce the variables

$$
\begin{equation*}
x_{0}=\frac{\varepsilon_{0}}{2 V}, \quad x_{c}=\frac{\varepsilon_{c}(z)}{2 V}, \quad \omega=\frac{z}{2 V} . \tag{12}
\end{equation*}
$$

Eq. (9) can then be written as

$$
\begin{equation*}
x_{c}=(2 c-1) x_{0}+\frac{x_{0}^{2}-x_{c}^{2}}{\sqrt{\left(\omega-x_{c}\right)^{2}-1}} . \tag{13}
\end{equation*}
$$

Solve this equation numerically by writing a corresponding computer code!
Important note: from the two possible values of $\sqrt{\left(\omega-x_{c}\right)^{2}-1}$ the one with negative imaginary part should be chosen!
(a) An iterative solution can start with $x_{c}^{(1)}=(2 c-1) x_{0}$ (in fact, this is the virtual crystal approximation). Apply a small positive imaginary part for $\omega(\operatorname{Im} \omega \simeq 0.01-0.05)$ and use a linear mixing scheme,

$$
\begin{equation*}
x_{c}^{(n+1), \text { in }}=\alpha x_{c}^{(n), o u t}+(1-\alpha) x_{c}^{(n), \text { in }} \tag{14}
\end{equation*}
$$

with a suitable value of $\alpha(\alpha \simeq 0.1-0.5)$!
(b) More preferably, the iterative process proposed to have a power-like convergence should be used. Start again with $x_{c}^{(1)}=(2 c-1) x_{0}$, then follow the steps:

$$
\begin{gather*}
1: \quad G_{c}^{(n)}(z)=\frac{1}{\sqrt{\left(\omega-x_{c}^{(n)}\right)^{2}-1}} \tag{15}\\
2: \quad t_{c}^{(n)}=\frac{c\left(x_{0}-x_{c}^{(n)}\right)}{1-\left(x_{0}-x_{c}^{(n)}\right) G_{c}^{(n)}-\frac{(1-c)\left(x_{0}+x_{c}^{(n)}\right)}{1+\left(x_{0}+x_{c}^{(n)}\right) G_{c}^{(n)}}} \\
\Downarrow \tag{16}\\
3: \quad \Delta x_{c}^{(n+1)}=\frac{t_{c}^{(n)}}{1+t_{c}^{(n)} G_{c}^{(n)}} \\
x_{c}^{(n+1)}=x_{c}^{(n)}+\Delta x_{c}^{(n+1)} \tag{17}\\
\Downarrow
\end{gather*}
$$

After getting the self-consistent solution for x_{c}, plot the dimensionless densities of states,

$$
\begin{equation*}
D_{c}(\omega)=-\operatorname{Im} \frac{1}{\sqrt{\left(\omega-x_{c}\right)^{2}-1}} \tag{19}
\end{equation*}
$$

for $c=0.5$ and $x_{0}=1$, for $c=0.5$ and $x_{0}=2$, and for $c=0.1$ and $x_{0}=2$!

