1. Prove that the expectation value of a Hermitean operator \mathcal{A} ,

$$A = \sum_{n} f(\varepsilon_{n}) \langle \varphi_{n} | \mathcal{A} | \varphi_{n} \rangle , \qquad (1)$$

where $f(\varepsilon) = 1/(1 + e^{(\varepsilon - \mu)/k_BT})$ is the Fermi distribution, μ is the chemical potential, and $H|\varphi_n\rangle = \varepsilon_n |\varphi_n\rangle$, can be expressed as

$$A = -\frac{1}{\pi} \operatorname{Im} \int_{\Omega} dz f(z) Tr(\mathcal{AG}(z)) - 2k_B T \sum_{\operatorname{Im} z_k > 0} \operatorname{Re} Tr(\mathcal{AG}(z_k)) , \qquad (2)$$

where \curvearrowright denotes a contour in the upper complex semiplane starting end ending at $-\infty$ and ∞ , respectively, and $z_k = \mu + i (2k + 1) \pi k_B T$ ($k \in \mathbb{Z}$) are the poles of f(z) (fermionic Matsubara poles) lying between the real axis and \curvearrowright .

2. Let's consider a solid system described by a tight-binding Hamiltonian matrix, $\underline{\underline{H}} = \{\underline{\underline{H}}_{ij}\}$. The atom at site *i* is replaced by an other atom, characterized by the on-site matrix, $\underline{\underline{H}}'_i$, while the off-site blocks of the Hamiltonian are supposed to be unchanged.

(a) Prove that the corresponding site-diagonal block of the resolvent matrix is

$$\underline{G}_{ii}'(z) = \underline{G}_{ii}(z) \left(\underline{I} - \Delta \underline{H}_i \underline{G}_{ii}(z)\right)^{-1} , \qquad (3)$$

where $\Delta \underline{H}_i = \underline{H}'_i - \underline{H}_i$ and $\underline{G}_{ii}(z)$ is the site-diagonal block of the resolvent matrix of the host system.

(b) Show that the single-site CPA condition for the *t*-matrices is equivalent with the following condition for the resolvent matrices,

$$\underline{G}_{ii}^{c}(z) = c\underline{G}_{ii}^{A}(z) + (1-c)\underline{G}_{ii}^{B}(z) , \qquad (4)$$

where $\underline{G}_{ii}^{\alpha}(z)$ denotes the site-diagonal block of the resolvent matrix when a single impurity of type $\alpha \in \{A, B\}$ is embedded into the effective medium at site *i*.

(The exercise was in part solved during the course.)

3. The nearest neighbor tight-binding Hamiltonian for a single-band system on a simple onedimensional lattice with lattice constant a is given by

$$H_{ij} = \varepsilon_0 \delta_{ij} + V \left(\delta_{i,j+1} + \delta_{i,j-1} \right) , \qquad (5)$$

where *i* and *j* denote sites of the lattice (V > 0). Prove that, for Im z > 0 and $\varepsilon_0 - 2V < \varepsilon \equiv \text{Re } z < \varepsilon_0 + 2V$, the real lattice representation of the resolvent can be expressed as

$$G_{ij}(z) = \frac{\left(\frac{z-\varepsilon_0}{2V} - \sqrt{\left(\frac{z-\varepsilon_0}{2V}\right)^2 - 1}\right)^{|i-j|}}{2V\sqrt{\left(\frac{z-\varepsilon_0}{2V}\right)^2 - 1}},$$
(6)

consequently,

$$G_{ii}(z) = \frac{1}{\sqrt{(z - \varepsilon_0)^2 - 4V^2}},$$
(7)

and the density of states per lattice site is

$$D(\varepsilon) = \frac{1}{\pi\sqrt{4V^2 - (\varepsilon - \varepsilon_0)^2}} \,! \tag{8}$$

(The exercise was in part solved during the course.)

4. Show that the single-site CPA condition for the above mentioned system can be written in the form,

$$\varepsilon_{c} = c\varepsilon_{A} + (1 - c)\varepsilon_{B} - (\varepsilon_{A} - \varepsilon_{c}(z))(\varepsilon_{B} - \varepsilon_{c}(z))G_{c}(z) , \qquad (9)$$

where c is the concentration of component A, ε_A and ε_B are the on-site energies for components A and B, $\varepsilon_c(z)$ is the self-energy for the effective medium and

$$G_{c}(z) = \frac{1}{\sqrt{(z - \varepsilon_{c}(z))^{2} - 4V^{2}}} \,! \tag{10}$$

5. Let us fix the on-site energies in the above example as

$$\varepsilon_A = \varepsilon_0 \quad \varepsilon_B = -\varepsilon_0 \tag{11}$$

and introduce the variables

$$x_0 = \frac{\varepsilon_0}{2V}, \quad x_c = \frac{\varepsilon_c(z)}{2V}, \quad \omega = \frac{z}{2V}.$$
 (12)

Eq. (9) can then be written as

$$x_c = (2c-1)x_0 + \frac{x_0^2 - x_c^2}{\sqrt{(\omega - x_c)^2 - 1}}.$$
(13)

Solve this equation numerically by writing a corresponding computer code!

<u>Important note</u>: from the two possible values of $\sqrt{(\omega - x_c)^2 - 1}$ the one with negative imaginary part should be chosen!

(a) An iterative solution can start with $x_c^{(1)} = (2c-1)x_0$ (in fact, this is the virtual crystal approximation). Apply a small positive imaginary part for ω (Im $\omega \simeq 0.01 - 0.05$) and use a linear mixing scheme,

$$x_{c}^{(n+1),in} = \alpha \, x_{c}^{(n),out} + (1-\alpha) \, x_{c}^{(n),in} \tag{14}$$

with a suitable value of α ($\alpha \simeq 0.1 - 0.5$)!

(b) More preferably, the iterative process proposed to have a power-like convergence should be used. Start again with $x_c^{(1)} = (2c - 1) x_0$, then follow the steps:

1:
$$G_c^{(n)}(z) = \frac{1}{\sqrt{\left(\omega - x_c^{(n)}\right)^2 - 1}}$$
 (15)
 \downarrow

$$2: \quad t_c^{(n)} = \frac{c\left(x_0 - x_c^{(n)}\right)}{1 - \left(x_0 - x_c^{(n)}\right)G_c^{(n)}} - \frac{(1 - c)\left(x_0 + x_c^{(n)}\right)}{1 + \left(x_0 + x_c^{(n)}\right)G_c^{(n)}} \qquad (16)$$

repeat from step 1 until convergence (18)

After getting the self-consistent solution for x_c , plot the dimensionless densities of states,

$$D_c(\omega) = -\operatorname{Im} \frac{1}{\sqrt{(\omega - x_c)^2 - 1}},$$
(19)

for c = 0.5 and $x_0 = 1$, for c = 0.5 and $x_0 = 2$, and for c = 0.1 and $x_0 = 2!$