
1. Prove that the expectation value of a Hermitean operator A,

A =
∑

n

f (εn) 〈ϕn| A |ϕn〉 , (1)

where f (ε) = 1/
(
1 + e(ε−µ)/kBT

)
is the Fermi distribution, µ is the chemical potential, and

H|ϕn〉 = εn|ϕn〉, can be expressed as

A = −
1

π
Im

∫

�

dz f (z)Tr (AG (z))− 2kBT
∑

Im zk>0

ReTr (AG (zk)) , (2)

where� denotes a contour in the upper complex semiplane starting end ending at −∞ and∞,
respectively, and zk = µ+i (2k + 1)πkBT (k ∈ Z) are the poles of f (z) (fermionic Matsubara
poles) lying between the real axis and �.

2. Let’s consider a solid system described by a tight-binding Hamiltonian matrix, H =
{
Hij

}
.

The atom at site i is replaced by an other atom, characterized by the on-site matrix, H ′
i, while

the off-site blocks of the Hamiltonian are supposed to be unchanged.

(a) Prove that the corresponding site-diagonal block of the resolvent matrix is

G′
ii (z) = Gii (z) (I −∆H iGii (z))

−1 , (3)

where ∆H i = H ′
i−H i and Gii (z) is the site-diagonal block of the resolvent matrix of the host

system.

(b) Show that the single-site CPA condition for the t-matrices is equivalent with the following
condition for the resolvent matrices,

Gc
ii (z) = cGA

ii (z) + (1− c)GB
ii (z) , (4)

where Gα
ii (z) denotes the site-diagonal block of the resolvent matrix when a single impurity of

type α ∈ {A,B} is embedded into the effective medium at site i.

(The exercize was in part solved during the course.)

3. The nearest neighbor tight-binding Hamiltonian for a single-band system on a simple one-
dimensional lattice with lattice constant a is given by

Hij = ε0δij + V (δi,j+1 + δi,j−1) , (5)

where i and j denote sites of the lattice (V > 0). Prove that, for Im z > 0 and ε0 − 2V < ε ≡
Re z < ε0 + 2V , the real lattice representation of the resolvent can be expressed as

Gij (z) =

(
z−ε0
2V

−
√(

z−ε0
2V

)2
− 1

)|i−j|

2V
√(

z−ε0
2V

)2
− 1

, (6)

consequently,

Gii (z) =
1

√
(z − ε0)

2 − 4V 2

, (7)
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and the density of states per lattice site is

D (ε) =
1

π
√
4V 2 − (ε− ε0)

2
! (8)

(The exercize was in part solved during the course.)

4. Show that the single-site CPA condition for the above mentioned system can be written in
the form,

εc = cεA + (1− c) εB − (εA − εc (z)) (εB − εc (z))Gc (z) , (9)

where c is the concentration of component A, εA and εB are the on-site energies for components
A and B, εc (z) is the self-energy for the effective medium and

Gc (z) =
1

√
(z − εc (z))

2 − 4V 2

! (10)

5. Let us fix the on-site energies in the above example as

εA = ε0 εB = −ε0 (11)

and introduce the variables

x0 =
ε0
2V

, xc =
εc (z)

2V
, ω =

z

2V
. (12)

Eq. (9) can then be written as

xc = (2c− 1) x0 +
x20 − x2c√

(ω − xc)
2 − 1

. (13)

Solve this equation numerically by writing a corresponding computer code!

Important note: from the two possible values of
√
(ω − xc)

2 − 1 the one with negative imagi-

nary part should be chosen!

(a) An iterative solution can start with x
(1)
c = (2c− 1) x0 (in fact, this is the virtual crystal

approximation). Apply a small positive imaginary part for ω (Imω ≃ 0.01 − 0.05) and use a
linear mixing scheme,

x(n+1),inc = α x(n),outc + (1− α) x(n),inc (14)

with a suitable value of α (α ≃ 0.1− 0.5)!

(b) More preferably, the iterative process proposed to have a power-like convergence should be

used. Start again with x
(1)
c = (2c− 1) x0, then follow the steps:

2



1 : G(n)
c (z) =

1
√(

ω − x
(n)
c

)2
− 1

(15)

⇓

2 : t(n)c =
c
(
x0 − x

(n)
c

)

1−
(
x0 − x

(n)
c

)
G
(n)
c

−
(1− c)

(
x0 + x

(n)
c

)

1 +
(
x0 + x

(n)
c

)
G
(n)
c

(16)

⇓

3 : ∆x(n+1)c =
t
(n)
c

1 + t
(n)
c G

(n)
c

(17)

x(n+1)c = x(n)c +∆x(n+1)c

⇓

repeat from step 1 until convergence (18)

After getting the self-consistent solution for xc, plot the dimensionless densities of states,

Dc (ω) = − Im
1

√
(ω − xc)

2 − 1
, (19)

for c = 0.5 and x0 = 1, for c = 0.5 and x0 = 2, and for c = 0.1 and x0 = 2!
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