1 One-dimensional lattice

1.1 Gap formation in the nearly free electron model

Periodic potential

$$
\begin{equation*}
V(x)=\sum_{n=-\infty}^{\infty} V_{n} e^{i(2 \pi n / a) x} \tag{1}
\end{equation*}
$$

Bloch function

$$
\begin{gather*}
\psi_{k}(x)=e^{i k a} u_{k}(x) \tag{2}\\
u_{k}(x)=\sum_{n=-\infty}^{\infty} c_{n k} e^{i(2 \pi n / a) x} \tag{3}
\end{gather*}
$$

Schrödinger equation

$$
\begin{gather*}
{\left[\frac{1}{2 m}\left(k+\frac{\hbar}{i} \frac{d}{d x}\right)^{2}+\sum_{n^{\prime}=-\infty}^{\infty} V_{n^{\prime}} e^{i\left(2 \pi n^{\prime} / a\right) x}\right]\left(\sum_{n=-\infty}^{\infty} c_{n k} e^{i(2 \pi n / a) x}\right)=E \sum_{n=-\infty}^{\infty} c_{n k} e^{i(2 \pi n / a) x}} \tag{4}\\
\Downarrow \\
\sum_{n=-\infty}^{\infty} c_{n k} \varepsilon_{n k} e^{i(2 \pi n / a) x}+\sum_{n, n^{\prime}=-\infty}^{\infty} c_{n k} V_{n^{\prime}} e^{i\left(2 \pi\left(n+n^{\prime}\right) / a\right) x}=E \sum_{n=-\infty}^{\infty} c_{n k} e^{i(2 \pi n / a) x} \tag{5}\\
\varepsilon_{n k}=\frac{\hbar^{2}\left(k+\frac{2 \pi n}{a}\right)^{2}}{2 m} \tag{6}\\
\Downarrow \\
c_{n k}\left(\varepsilon_{n k}-E\right)+\sum_{n^{\prime}=-\infty}^{\infty} V_{n-n^{\prime}} c_{n^{\prime} k}=0 \tag{7}
\end{gather*}
$$

For simplicity, let's choose

$$
\begin{gather*}
V(x)=V\left(e^{i(2 \pi / a) x}+e^{-i(2 \pi / a) x}\right) \tag{8}\\
\Downarrow \\
c_{n k}\left(\varepsilon_{n k}-E\right)+V c_{n-1, k}+V c_{n+1, k}=0 \tag{9}\\
\Downarrow \\
c_{0 k}\left(\varepsilon_{0 k}-E\right)+V c_{-1, k}+V c_{1, k}=0 \tag{10}\\
c_{1 k}\left(\varepsilon_{1 k}-E\right)+V c_{0, k}+V c_{2, k}=0 \tag{11}\\
\vdots \\
c_{-1, k}\left(\varepsilon_{-1, k}-E\right)+V c_{-2, k}+V c_{0, k}=0 \tag{12}\\
c_{-2, k}\left(\varepsilon_{-2, k}-E\right)+V c_{-3, k}+V c_{-1, k}=0 \tag{13}
\end{gather*}
$$

$$
\begin{array}{r}
c_{0 k}\left(\varepsilon_{0 k}-E\right)+V c_{-1, k}+\frac{V^{2}}{E-\varepsilon_{1 k}}\left(c_{0, k}+c_{2, k}\right)+\ldots=0 \\
c_{-1, k}\left(\varepsilon_{-1, k}-E\right)+V c_{0, k}+\frac{V^{2}}{E-\varepsilon_{-2, k}}\left(c_{-3, k}+c_{-1, k}\right)+\ldots=0 \tag{15}
\end{array}
$$

Thus, for weak potential V and for

$$
\begin{equation*}
\varepsilon_{0 k} \approx \varepsilon_{-1, k} \Longrightarrow k \simeq \frac{\pi}{a} \tag{16}
\end{equation*}
$$

the first order approach

$$
\begin{align*}
c_{0 k}\left(\varepsilon_{0 k}-E\right)+V c_{-1, k} & =0 \tag{17}\\
c_{-1, k}\left(\varepsilon_{-1, k}-E\right)+V c_{0, k} & =0 \tag{18}
\end{align*}
$$

can be used, whereas the wavefunction can be expressed as

$$
\begin{equation*}
\psi_{k}(x)=\frac{c_{0 k}}{\sqrt{N a}}\left[e^{i k x}+\frac{V}{E-\frac{\hbar^{2}(k-2 \pi / a)^{2}}{2 m}} e^{i(k-2 \pi / a) x}\right] \tag{19}
\end{equation*}
$$

Secular equation

$$
\begin{gather*}
\operatorname{det}\left(\begin{array}{cc}
\varepsilon_{0 k}-E & V \\
V & \left(\varepsilon_{-1, k}-E\right)
\end{array}\right)=0 \tag{20}\\
\left(\varepsilon_{0 k}-E\right)\left(\varepsilon_{-1, k}-E\right)-V^{2}=0 \tag{21}\\
E^{2}-\left[\varepsilon_{0 k}+\varepsilon_{-1, k}\right] E+\varepsilon_{0 k} \varepsilon_{-1, k}-V^{2}=0 \tag{22}
\end{gather*}
$$

Eigenvalues:

$$
\begin{equation*}
E_{ \pm}(k)=\frac{1}{2}\left[\varepsilon_{0 k}+\varepsilon_{-1, k}\right] \pm \frac{1}{2}\left(\left[\varepsilon_{0 k}-\varepsilon_{-1, k}\right]^{2}+4 V^{2}\right)^{1 / 2} \tag{23}
\end{equation*}
$$

In case of $k=\pi / a$

$$
\begin{equation*}
E_{ \pm}\left(k=\frac{\pi}{a}\right)=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} \pm|V| \tag{24}
\end{equation*}
$$

with the wavefunctions

$$
\begin{equation*}
\psi_{ \pm}(x)=\frac{1}{\sqrt{N a}}\left[e^{i \pi x / a} \pm(\operatorname{sign} V) e^{-i \pi x / a}\right] \tag{25}
\end{equation*}
$$

E	ψ	
	$V>0$	$V<0$
$\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}+\|V\|$	$\cos (\pi x / a)$	$\sin (\pi x / a)$
$\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}-\|V\|$	$\sin (\pi x / a)$	$\cos (\pi x / a)$

indirect gap direct gap

Table 1: Eigenfunctions at $k=\frac{\pi}{a}$ for the lowest two bands of a one-dimensional simple lattice.

1.2 Surface state

Surface potential:

$$
V(x)=\left\{\begin{array}{cc}
2 V \cos \left(\frac{\pi}{a} x\right) & x<0 \tag{26}\\
V_{0}\left(>\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}+|V|\right) & x>0
\end{array}\right.
$$

We look for a solution of the Schrödinger equation in the gap, i.e.,

$$
\begin{equation*}
\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}-|V|<E<\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}+|V| \tag{27}
\end{equation*}
$$

Wavefunction in the vacuum region, $x>0$,

$$
\begin{align*}
& \frac{\psi(x)=\alpha e^{-k_{0} x}}{} \tag{28}\\
& k_{0}=\sqrt{V_{0}-E} \tag{29}
\end{align*}
$$

We know that for $x<0$ the Schrödinger equation has no propagating solutions with energy lying in the gap. For large x the wavefunction should, however, be a solution of the Schrödinger equation for the bulk. This problem can be handled as in the previous section, but with a complex wavenumber, $k-i \mu(\mu>0)$. This ensures that the wavefunction exponentially decays in the bulk region. According to Eq. (19) the wavefunction can be written as

$$
\begin{equation*}
\psi(x)=B e^{\mu x}\left[e^{i k x}+\frac{V}{E-\frac{\hbar^{2}(k-2 \pi / a-i \mu)^{2}}{2 m}} e^{i(k-2 \pi / a) x}\right] \tag{30}
\end{equation*}
$$

Regarding the scattering problem, we have to note that the current density for $x>0$ is zero, since the wavefunction is real. The current density for the incoming wave is

$$
\begin{equation*}
j_{i n}=\frac{\hbar}{m} \operatorname{Im}\left(e^{-i(k-i \mu) x} \frac{d}{d x} e^{i(k-i \mu) x}\right)=\frac{\hbar k}{m} \tag{31}
\end{equation*}
$$

while for the reflected wave,

$$
\begin{equation*}
j_{r e f l}=\frac{\hbar(k-2 \pi / a)}{m}\left|\frac{V}{E-\frac{\hbar^{2}(\pi / a-i \mu)^{2}}{2 m}}\right|^{2} . \tag{32}
\end{equation*}
$$

Note that these values are modified by the normalization of the wavefunctions. We are now interested in the reflection coefficient that must be unity (no transmission),

$$
\begin{equation*}
R=\frac{\left|j_{r e f l}\right|}{\left|j_{i n}\right|}=\left|\frac{k-2 \pi / a}{k}\right|\left|\frac{V}{E-\frac{\hbar^{2}(k-2 \pi / a-i \mu)^{2}}{2 m}}\right|^{2}=1 \tag{33}
\end{equation*}
$$

which yields a complicated relationship between E, k and μ.
In order to simplify matter, let us confine to the case of $k=\frac{\pi}{a}$,

$$
\begin{equation*}
\psi(x)=B e^{\mu x}\left[e^{i \pi x / a}+\frac{V}{E-\frac{\hbar^{2}(\pi / a-i \mu)^{2}}{2 m}} e^{-i \pi x / a}\right] \tag{34}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|\frac{V}{E-\frac{\hbar^{2}(\pi / a-i \mu)^{2}}{2 m}}\right|=1 . \tag{35}\\
\Downarrow \\
V^{2}=\left(E-\frac{\hbar^{2}(\pi / a+i \mu)^{2}}{2 m}\right)\left(E-\frac{\hbar^{2}(\pi / a-i \mu)^{2}}{2 m}\right) \tag{36}\\
=E^{2}+E \frac{\hbar^{2}}{m}\left(\mu^{2}-\frac{\pi^{2}}{a^{2}}\right)+\left(\frac{\hbar^{2}}{2 m}\right)^{2}\left(\frac{\pi^{2}}{a^{2}}+\mu^{2}\right)^{2} \tag{37}\\
=E^{2}-E \frac{2 \hbar^{2}}{m} \frac{\pi^{2}}{a^{2}}+E \frac{\hbar^{2}}{m}\left(\mu^{2}+\frac{\pi^{2}}{a^{2}}\right)+\left(\frac{\hbar^{2}}{2 m}\right)^{2}\left(\frac{\pi^{2}}{a^{2}}+\mu^{2}\right)^{2} \tag{38}\\
\Downarrow \\
\left(\frac{\pi^{2}}{a^{2}}+\mu^{2}\right)^{2}+\frac{4 m}{\hbar^{2}} E\left(\frac{\pi^{2}}{a^{2}}+\mu^{2}\right)+\frac{4 m^{2}}{\hbar^{4}} E^{2}-E \frac{8 m}{\hbar^{2}} \frac{\pi^{2}}{a^{2}}-\frac{4 m^{2}}{\hbar^{4}} V^{2}=0 \tag{39}\\
\Downarrow \\
\frac{\hbar^{2} \mu^{2}}{2 m}=-\left(E+\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}\right)+\left(4 \frac{\hbar^{2} \pi^{2}}{2 m a^{2}} E+V^{2}\right)^{1 / 2} \cdot \tag{40}
\end{gather*}
$$

The right-hand side of the above equation is positive, since

$$
\begin{equation*}
\left|E+\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}\right|<\left(4 \frac{\hbar^{2} \pi^{2}}{2 m a^{2}} E+V^{2}\right)^{1 / 2} \tag{41}
\end{equation*}
$$

$$
\begin{gather*}
E^{2}+\left(\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}\right)^{2}+2 \frac{\hbar^{2} \pi^{2}}{2 m a^{2}} E<4 \frac{\hbar^{2} \pi^{2}}{2 m a^{2}} E+V^{2} \tag{42}\\
\left|E-\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}\right|<|V|
\end{gather*}
$$

which is indeed satisfied, since the energy of the surface state lies in the gap.
Because of (35) we can introduce a phaseshift $\delta(-\pi<\delta<\pi)$ via the relationship,

$$
\begin{equation*}
e^{-2 i \delta}=\frac{V}{E-\frac{\hbar^{2}(\pi / a-i \mu)^{2}}{2 m}} \tag{44}
\end{equation*}
$$

and express the wavefunction for $x<0$ as

$$
\begin{equation*}
\psi(x)=\beta e^{\mu x} \cos \left(\frac{\pi x}{a}+\delta\right) . \tag{45}
\end{equation*}
$$

We are now left with matching the wavefunctions (28) and (45) at a given point $x=x_{0}$,

$$
\begin{gather*}
\alpha e^{-k_{0} x_{0}}=\beta e^{\mu x_{0}} \cos \left(\frac{\pi x_{0}}{a}+\delta\right) \tag{46}\\
-\alpha k_{0} e^{-k_{0} x_{0}}=\beta \mu e^{\mu x_{0}} \cos \left(\frac{\pi x_{0}}{a}+\delta\right)-\frac{\beta \pi}{a} e^{\mu x_{0}} \sin \left(\frac{\pi x_{0}}{a}+\delta\right) \tag{47}\\
\Downarrow \tag{48}\\
\alpha\left(k_{0}+\mu\right) e^{-k_{0} x_{0}}=\frac{\beta \pi}{a} e^{\mu x_{0}} \sin \left(\frac{\pi x_{0}}{a}+\delta\right) \\
\Downarrow \tag{49}\\
\frac{\pi}{a} \tan \left(\frac{\pi x_{0}}{a}+\delta\right)=k_{0}+\mu
\end{gather*}
$$

Matching at $\underline{x_{0}=0}$ implies

$$
\begin{equation*}
\underline{\frac{\pi}{a}} \tan (\delta)=k_{0}+\mu \tag{50}
\end{equation*}
$$

that means for any (positive) value of k_{0} and μ one can find a $\delta(0<\delta<\pi / 2)$ that satisfies the above equation, i.e., a surface state will be formed. Since

$$
\begin{align*}
e^{2 i \delta} & =\frac{V}{E-\frac{\hbar^{2}(\pi / a+i \mu)^{2}}{2 m}}=\frac{1}{V}\left(E-\frac{\hbar^{2}(\pi / a-i \mu)^{2}}{2 m}\right) \tag{51}\\
& =\frac{1}{V}\left(E-\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}+\frac{\hbar^{2} \mu^{2}}{2 m}\right)+i \frac{E \hbar^{2} \pi \mu}{V m a} \tag{52}
\end{align*}
$$

a sufficient condition for the existence of the surface state is

$$
\begin{equation*}
\underline{V>0} \tag{53}
\end{equation*}
$$

This is called a Tamm-state that happens in case of an indirect gap. By matching the wavefunctions at $x_{0}=-a / 2$, the condition of the surface state is $V>0$ (Shockley-state, direct gap).

The Brillouin zone of an fcc lattice

The Fermi surface of Cu

FIG. 1. Results of the band-structure calculation along the $\bar{\Gamma} \bar{M}$ direction for a 23-layer slab of $\mathrm{Au}(111)$. The shaded area represents the projected bulk states, and the solid lines give the surface state dispersion. The Fermi level has been adjusted to the experimental position.

2 The Bychkov-Rashba effect

Planewave-like surface state in a non-magnetic host:

$$
\begin{equation*}
\varphi_{\mathbf{k} s}(\mathbf{r})=\frac{1}{\sqrt{N}} \chi_{s} e^{i \mathbf{k r}} \tag{54}
\end{equation*}
$$

where χ_{s} is a spinor, $\mathbf{k}=\left(k_{x}, k_{y}\right) \in S B Z$ (Surface Brillouin zone), N is the number of sites on the 2D lattice. These states are eigenfunctions of the Hamiltonian, H_{0}, in absence of spin-orbit coupling

$$
\begin{equation*}
H_{0} \varphi_{\mathbf{k} s}=\left(E_{0}+\frac{\hbar^{2} \mathbf{k}^{2}}{2 m^{*}}\right) \varphi_{\mathbf{k} s} \tag{55}
\end{equation*}
$$

The spin-orbit coupling (SOC),

$$
\begin{equation*}
H_{S O C}=-\frac{\hbar}{4 m^{2} c^{2}}(\nabla V \times \mathbf{p}) \sigma=\frac{\hbar}{4 m^{2} c^{2}}(\nabla V \times \sigma) \mathbf{p} \tag{56}
\end{equation*}
$$

acts on these states as

$$
\begin{equation*}
H_{S O C} \varphi_{\mathbf{k} s}(\mathbf{r})=\frac{\hbar^{2}}{4 m^{2} c^{2} \sqrt{N_{\|}}}\left(\nabla V(\mathbf{r}) \times \sigma \chi_{s}\right) \mathbf{k} e^{i \mathbf{k r}} \tag{57}
\end{equation*}
$$

The matrixelements of SOC can be expressed as

$$
\begin{gather*}
\left\langle\mathbf{k}^{\prime} s^{\prime}\right| H_{S O C}|\mathbf{k} s\rangle=\delta_{\mathbf{k k}^{\prime}}\left(\alpha_{\mathbf{k}} \times \sigma_{s^{\prime} s}\right) \mathbf{k} \tag{58}\\
\alpha_{\mathbf{k}}=\frac{\hbar^{2}}{4 m^{2} c^{2}} \int_{W S} d^{3} r e^{-i \mathbf{k r}} \nabla V(\mathbf{r}) e^{i \mathbf{k r}} \tag{59}
\end{gather*}
$$

According to the simplest model of the Rashba-effect only the normal component of $\nabla V(\mathbf{r})$ is taken into account,

$$
\begin{equation*}
\nabla V(\mathbf{r}) \simeq \mathbf{e}_{z} \frac{d V(z)}{d z} \tag{60}
\end{equation*}
$$

which implies

$$
\begin{gather*}
\alpha_{\mathbf{k}}=\alpha \mathbf{e}_{z} \tag{61}\\
\alpha=\frac{\hbar^{2}}{4 m^{2} c^{2}} \int_{W S} d^{3} r \frac{d V(z)}{d z} \tag{62}
\end{gather*}
$$

and, correspondingly,

$$
\begin{equation*}
\underline{H_{S O C}}(\mathbf{k})=\alpha\left(\mathbf{e}_{z} \times \sigma\right) \mathbf{k}=\alpha\left(\sigma_{x} k_{y}-\sigma_{y} k_{x}\right) \tag{63}
\end{equation*}
$$

Neglecting the interaction with the bulk states, one has to solve the following eigenvalue problem,

$$
\begin{equation*}
\left[E_{0}+\frac{\hbar^{2} \mathbf{k}^{2}}{2 m^{*}}+\alpha\left(\sigma_{x} k_{y}-\sigma_{y} k_{x}\right)\right] \psi_{\mathbf{k}}=E_{\mathbf{k}} \psi_{\mathbf{k}} \tag{64}
\end{equation*}
$$

i.e.,

$$
\left[\begin{array}{cc}
E_{0}+\frac{\hbar^{2} \mathbf{k}^{2}}{2 m^{*}} & \alpha\left(k_{y}+i k_{x}\right) \tag{65}\\
\alpha\left(k_{y}-i k_{x}\right) & E_{0}+\frac{\hbar^{2} \mathbf{k}^{2}}{2 m^{*}}
\end{array}\right] \psi_{\mathbf{k}}=E_{\mathbf{k}} \psi_{\mathbf{k}}
$$

$$
\begin{gathered}
\Downarrow \\
\left(E_{0}+\frac{\hbar^{2} \mathbf{k}^{2}}{2 m^{*}}-E_{\mathbf{k}}\right)^{2}-\alpha^{2}\left(k_{x}^{2}+k_{y}^{2}\right)=0 \\
\Downarrow \\
E_{\mathbf{k}}^{ \pm}=E_{0}+\frac{\hbar^{2} \mathbf{k}^{2}}{2 m^{*}} \pm \alpha|\mathbf{k}|
\end{gathered}
$$

2.1 Alternative representation

Taking any direction in the SBZ, $\mathbf{k}=k \widehat{e}$,

$$
E_{k}^{ \pm}=\left\{\begin{array}{lll}
E_{0}+\frac{\hbar^{2} k^{2}}{2 m^{*}} \pm \alpha k & \text { if } & k>0 \tag{67}\\
E_{0}+\frac{\hbar^{2} k^{2}}{2 m^{*}} \mp \alpha k & \text { if } & k<0
\end{array} .\right.
$$

Defining

$$
\begin{align*}
E_{k}^{\vec{~}} & =E_{k}^{-} \Theta(k)+E_{k}^{+}[1-\Theta(k)] \tag{68}\\
& =\frac{\hbar^{2} k^{2}}{2 m^{*}}-\alpha k=E_{0}+E_{R}+\frac{\hbar^{2}(k-\Delta k / 2)^{2}}{2 m^{*}} \tag{69}
\end{align*}
$$

and

$$
\begin{align*}
E_{k}^{\leftarrow} & =E_{k}^{+} \Theta(k)+E_{k}^{-}[1-\Theta(k)] \tag{70}\\
& =\frac{\hbar^{2} k^{2}}{2 m^{*}}+\alpha k=E_{0}+E_{R}+\frac{\hbar^{2}(k+\Delta k / 2)^{2}}{2 m^{*}}+E_{R} \tag{71}
\end{align*}
$$

with

$$
\begin{equation*}
\frac{\hbar^{2} \Delta k}{2 m^{*}}=\alpha \Longrightarrow \Delta k=\frac{2 m^{*} \alpha}{\hbar^{2}} \tag{72}
\end{equation*}
$$

and the Rashba energy,

$$
\begin{equation*}
E_{R}=-\frac{\hbar^{2}(\Delta k)^{2}}{8 m^{*}}=-\frac{m^{*} \alpha^{2}}{2 \hbar^{2}} \tag{73}
\end{equation*}
$$

we indeed get two parabolas shifted left and right by $\Delta k / 2$ and downwards by E_{R}.

3 Spin-polarization

By introducing $\mathbf{k}=k(\cos (\varphi), \sin (\varphi))$, the Hamiltonian can be written as

$$
H_{\mathbf{k}}=\left[\begin{array}{cc}
E_{0}+\frac{\hbar^{2} k^{2}}{2 m^{*}} & i \alpha k e^{-i \varphi} \tag{74}\\
-i \alpha k e^{i \varphi} & E_{0}+\frac{\hbar^{2} k^{2}}{2 m^{*}}
\end{array}\right]
$$

and the eigenvectors are solutions of the equation

$$
\begin{gather*}
{\left[\begin{array}{cc}
\mp \alpha k & i \alpha k e^{-i \varphi} \\
-i \alpha k e^{i \varphi} & \mp \alpha k
\end{array}\right] \psi_{\mathbf{k}}^{ \pm}=0} \tag{75}\\
\Downarrow \\
{\left[\begin{array}{cc}
\mp 1 & i e^{-i \varphi} \\
-i e^{i \varphi} & \mp 1
\end{array}\right] \psi_{\mathbf{k}}^{ \pm}=0} \tag{76}
\end{gather*}
$$

The solutions are

$$
\begin{equation*}
\psi_{\mathbf{k}}^{ \pm}=\frac{1}{\sqrt{2}}\binom{\mp 1}{i e^{i \varphi}} . \tag{77}
\end{equation*}
$$

The spin-polarization of the eigenstates is defined by

$$
\begin{gather*}
\frac{\vec{P}_{\mathbf{k}, \pm}=\left\langle\psi_{\mathbf{k}}^{ \pm}\right| \vec{\sigma}\left|\psi_{\mathbf{k}}^{ \pm}\right\rangle}{\Downarrow} \tag{78}\\
P_{ \pm}^{x}=\frac{1}{2}\left(\begin{array}{ll}
\mp 1 & -i e^{-i \varphi}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\mp 1}{i e^{i \varphi}}= \pm \sin \varphi \\
P_{ \pm}^{y}=\frac{1}{2}\left(\begin{array}{ll}
\mp 1 & -i e^{-i \varphi}
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{\mp 1}{i e^{i \varphi}}=\mp \cos \varphi \tag{79}\\
P_{ \pm}^{z}=\frac{1}{2}\left(\begin{array}{ll}
\mp 1 & -i e^{-i \varphi}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\mp 1}{i e^{i \varphi}}=0 \tag{80}
\end{gather*}
$$

i.e.,

$$
\vec{P}_{\mathbf{k}, \pm}=\left(\begin{array}{c}
\pm \sin (\varphi) \tag{82}\\
\mp \cos (\varphi) \\
0
\end{array}\right)=\frac{1}{k}\left(\begin{array}{c}
\pm k_{y} \\
\mp k_{x} \\
0
\end{array}\right)
$$

Obviously,

$$
\begin{align*}
& \left|\vec{P}_{\mathbf{k}, \pm}\right|=1 \tag{83}\\
& \vec{P}_{\mathbf{k}, \pm} \cdot \mathbf{k}=0 \tag{84}
\end{align*}
$$

and

$$
\begin{equation*}
\vec{P}_{\mathbf{k},-}=-\vec{P}_{\mathbf{k},+} \tag{85}
\end{equation*}
$$

One can define the helicity operator,

$$
\underline{h_{\mathbf{k}}}=\frac{1}{\alpha k} H_{S O C}(\mathbf{k})=\frac{1}{k}\left(\sigma_{x} k_{y}-\sigma_{y} k_{x}\right)=\left(\begin{array}{cc}
0 & i e^{-i \varphi} \tag{86}\\
-i e^{i \varphi} & 0
\end{array}\right)
$$

for which

$$
\begin{equation*}
\left[h_{\mathbf{k}}, H_{\mathbf{k}}\right]=0 \tag{87}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{\mathbf{k}}^{2}=I \tag{88}
\end{equation*}
$$

thus, the eigenvalues of $h_{\mathbf{k}}$ are ± 1.
Since

$$
\left(\begin{array}{cc}
0 & i e^{-i \varphi} \tag{89}\\
-i e^{i \varphi} & 0
\end{array}\right)\binom{\mp 1}{i e^{i \varphi}}= \pm\binom{-1}{i e^{i \varphi}}
$$

it follows that $\psi_{\mathbf{k}}^{ \pm}$are also the eigenfunctions of $h_{\mathbf{k}}$,

$$
\begin{equation*}
\underline{h_{\mathbf{k}} \psi_{\mathbf{k}}^{ \pm}= \pm \psi_{\mathbf{k}}^{ \pm}} . \tag{90}
\end{equation*}
$$

J. Henk, A. Ernst, and P. Bruno, Phys. Rev. B (2003)

FIG. 2. Rashba spin-orbit interaction in a two-dimensional electron gas. The dispersions $E_{ \pm}\left(\vec{k}_{\|}\right)$of free electrons are shown for $\gamma_{\mathrm{so}}=4 /$ Bohr, $\vec{k}_{\|}=\left(k_{x}, k_{y}\right)$. The "inner" state [" + " in Eq. (6)] shows strong dispersion, the "outer" weak dispersion [" - " in Eq. (6)]. Both surfaces touch each other at $\vec{k}_{\|}=0$. For a better illustration, the Rashba effect is extremely exaggerated (compared to typical two-dimensional electron gases).

FIG. 3. L-gap surface states on $\mathrm{Au}(111)$. (a) Dispersion of the spin-orbit split surface states along $\overline{\mathrm{K}}-\bar{\Gamma}-\overline{\mathrm{K}}\left[\right.$ i.e., $\left.\vec{k}_{\|}=\left(k_{x}, 0\right)\right]$. Open (closed) symbols belong to the inner (outer) surface state. Gray arrows point from the surface states at the Fermi energy E_{F} to the momentum distribution shown in panel b. The region of bulk bands is depicted by gray areas. (b) Momentum distribution at E_{F}. The thick arrows indicate the in-plane spin polarization $\left[P_{x}\right.$ and P_{y}, according to Eq. (9)].

