
1 One-dimensional lattice

1.1 Gap formation in the nearly free electron model

Periodic potential

V (x) =
∞∑

n=−∞

Vn e
i(2πn/a)x (1)

Bloch function
ψk (x) = eikauk (x) (2)

uk (x) =
∞∑

n=−∞

cnk e
i(2πn/a)x (3)

Schrödinger equation[
1

2m

(
k +

~
i

d

dx

)2

+
∞∑

n′=−∞

Vn′ ei(2πn′/a)x

](
∞∑

n=−∞

cnk e
i(2πn/a)x

)
= E

∞∑
n=−∞

cnk e
i(2πn/a)x (4)

⇓
∞∑

n=−∞

cnkεnke
i(2πn/a)x +

∞∑
n,n′=−∞

cnkVn′ ei(2π(n+n′)/a)x = E
∞∑

n=−∞

cnk e
i(2πn/a)x (5)

εnk =
~2
(
k + 2πn

a

)2
2m

(6)

⇓

cnk (εnk − E) +
∞∑

n′=−∞

Vn−n′cn′k = 0 (7)

For simplicity, let's choose
V (x) = V

(
ei(2π/a)x + e−i(2π/a)x

)
(8)

⇓
cnk (εnk − E) + V cn−1,k + V cn+1,k = 0 (9)

⇓

c0k (ε0k − E) + V c−1,k + V c1,k = 0 (10)

c1k (ε1k − E) + V c0,k + V c2,k = 0 (11)

...

c−1,k (ε−1,k − E) + V c−2,k + V c0,k = 0 (12)

c−2,k (ε−2,k − E) + V c−3,k + V c−1,k = 0 (13)

...
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⇓

c0k (ε0k − E) + V c−1,k +
V 2

E − ε1k

(c0,k + c2,k) + . . . = 0 (14)

c−1,k (ε−1,k − E) + V c0,k +
V 2

E − ε−2,k

(c−3,k + c−1,k) + . . . = 0 (15)

Thus, for weak potential V and for

ε0k ≈ ε−1,k =⇒ k ' π

a
(16)

the �rst order approach

c0k (ε0k − E) + V c−1,k = 0 (17)

c−1,k (ε−1,k − E) + V c0,k = 0 (18)

can be used, whereas the wavefunction can be expressed as

ψk (x) =
c0k√
Na

[
eikx +

V

E − ~2(k−2π/a)2

2m

ei(k−2π/a)x

]
(19)

Secular equation

det

(
ε0k − E V
V (ε−1,k − E)

)
= 0 (20)

(ε0k − E) (ε−1,k − E)− V 2 = 0 (21)

E2 − [ε0k + ε−1,k]E + ε0kε−1,k − V 2 = 0 (22)

Eigenvalues:

E± (k) =
1

2
[ε0k + ε−1,k]±

1

2

(
[ε0k − ε−1,k]

2 + 4V 2
)1/2

(23)

In case of k = π/a

E±

(
k =

π

a

)
=

~2π2

2ma2
± |V | (24)

with the wavefunctions

ψ± (x) =
1√
Na

[
eiπx/a ± (signV ) e−iπx/a

]
(25)
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E ψ
V > 0 V < 0

~2π2

2ma2 + |V | cos(πx/a) sin(πx/a)
~2π2

2ma2 − |V | sin(πx/a) cos(πx/a)

indirect gap direct gap

Table 1: Eigenfunctions at k = π
a
for the lowest two bands of a one-dimensional simple lattice.

1.2 Surface state

Surface potential:

V (x) =


2V cos

(
π
a
x
)

x < 0

V0

(
> ~2π2

2ma2 + |V |
)

x > 0
(26)

We look for a solution of the Schrödinger equation in the gap, i.e.,

~2π2

2ma2
− |V | < E <

~2π2

2ma2
+ |V | (27)

Wavefunction in the vacuum region, x > 0,

ψ (x) = αe−k0x (28)

k0 =
√
V0 − E (29)

We know that for x < 0 the Schrödinger equation has no propagating solutions with energy
lying in the gap. For large x the wavefunction should, however, be a solution of the Schrödinger
equation for the bulk. This problem can be handled as in the previous section, but with a
complex wavenumber, k− iµ (µ > 0). This ensures that the wavefunction exponentially decays
in the bulk region. According to Eq. (19) the wavefunction can be written as

ψ (x) = Beµx

[
eikx +

V

E − ~2(k−2π/a−iµ)2

2m

ei(k−2π/a)x

]
(30)

Regarding the scattering problem, we have to note that the current density for x > 0 is zero,
since the wavefunction is real. The current density for the incoming wave is

jin =
~
m

Im

(
e−i(k−iµ)x d

dx
ei(k−iµ)x

)
=

~k
m

(31)
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while for the re�ected wave,

jrefl =
~ (k − 2π/a)

m

∣∣∣∣∣ V

E − ~2(π/a−iµ)2

2m

∣∣∣∣∣
2

. (32)

Note that these values are modi�ed by the normalization of the wavefunctions. We are now
interested in the re�ection coe�cient that must be unity (no transmission),

R =
|jrefl|
|jin|

=

∣∣∣∣k − 2π/a

k

∣∣∣∣
∣∣∣∣∣ V

E − ~2(k−2π/a−iµ)2

2m

∣∣∣∣∣
2

= 1 (33)

which yields a complicated relationship between E, k and µ.

In order to simplify matter, let us con�ne to the case of k = π
a
,

ψ (x) = Beµx

[
eiπx/a +

V

E − ~2(π/a−iµ)2

2m

e−iπx/a

]
(34)

and ∣∣∣∣∣ V

E − ~2(π/a−iµ)2

2m

∣∣∣∣∣ = 1 . (35)

⇓

V 2 =

(
E − ~2 (π/a+ iµ)2

2m

)(
E − ~2 (π/a− iµ)2

2m

)
(36)

= E2 + E
~2

m

(
µ2 − π2

a2

)
+

(
~2

2m

)2(
π2

a2
+ µ2

)2

(37)

= E2 − E
2~2

m

π2

a2
+ E

~2

m

(
µ2 +

π2

a2

)
+

(
~2

2m

)2(
π2

a2
+ µ2

)2

(38)

⇓(
π2

a2
+ µ2

)2

+
4m

~2
E

(
π2

a2
+ µ2

)
+

4m2

~4
E2 − E

8m

~2

π2

a2
− 4m2

~4
V 2 = 0 (39)

⇓

~2µ2

2m
= −

(
E +

~2π2

2ma2

)
+

(
4

~2π2

2ma2
E + V 2

)1/2

. (40)

The right-hand side of the above equation is positive, since∣∣∣∣E +
~2π2

2ma2

∣∣∣∣ < (4
~2π2

2ma2
E + V 2

)1/2

(41)

m
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E2 +

(
~2π2

2ma2

)2

+ 2
~2π2

2ma2
E < 4

~2π2

2ma2
E + V 2 (42)

m∣∣∣∣E − ~2π2

2ma2

∣∣∣∣ < |V | (43)

which is indeed satis�ed, since the energy of the surface state lies in the gap.

Because of (35) we can introduce a phaseshift δ (−π < δ < π) via the relationship,

e−2iδ =
V

E − ~2(π/a−iµ)2

2m

(44)

and express the wavefunction for x < 0 as

ψ (x) = βeµx cos
(πx
a

+ δ
)
. (45)

We are now left with matching the wavefunctions (28) and (45) at a given point x = x0,

αe−k0x0 = βeµx0 cos
(πx0

a
+ δ
)

(46)

−αk0e
−k0x0 = βµeµx0 cos

(πx0

a
+ δ
)
− βπ

a
eµx0 sin

(πx0

a
+ δ
)

(47)

⇓

α (k0 + µ) e−k0x0 =
βπ

a
eµx0 sin

(πx0

a
+ δ
)

(48)

⇓
π

a
tan
(πx0

a
+ δ
)

= k0 + µ (49)

Matching at x0 = 0 implies
π

a
tan (δ) = k0 + µ (50)

that means for any (positive) value of k0 and µ one can �nd a δ (0 < δ < π/2) that satis�es
the above equation, i.e., a surface state will be formed. Since

e2iδ =
V

E − ~2(π/a+iµ)2

2m

=
1

V

(
E − ~2 (π/a− iµ)2

2m

)
(51)

=
1

V

(
E − ~2π2

2ma2
+

~2µ2

2m

)
+ i

E~2πµ

V ma
(52)

a su�cient condition for the existence of the surface state is

V > 0 (53)

This is called a Tamm-state that happens in case of an indirect gap. By matching the wave-
functions at x0 = −a/2, the condition of the surface state is V > 0 (Shockley-state, direct
gap).
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The Brillouin zone of an fcc lattice

The Fermi surface of Cu
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G. NICOLAY et al., PHYSICAL REVIEW B, VOLUME 65, 033407

FIG. 1. Results of the band-structure calculation along the �̄M̄
direction for a 23-layer slab of Au�111�. The shaded area represents
the projected bulk states, and the solid lines give the surface state
dispersion. The Fermi level has been adjusted to the experimental
position.
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2 The Bychkov-Rashba e�ect

Planewave-like surface state in a non-magnetic host:

ϕks (r) =
1√
N
χs e

ikr , (54)

where χs is a spinor, k = (kx, ky) ∈ SBZ (Surface Brillouin zone), N is the number of sites on
the 2D lattice. These states are eigenfunctions of the Hamiltonian, H0, in absence of spin-orbit
coupling

H0ϕks =

(
E0 +

~2k2

2m∗

)
ϕks . (55)

The spin-orbit coupling (SOC),

HSOC = − ~
4m2c2

(∇V × p)σ =
~

4m2c2
(∇V × σ)p . (56)

acts on these states as

HSOC ϕks (r) =
~2

4m2c2
√
Nq

(∇V (r)× σχs)k e
ikr . (57)

The matrixelements of SOC can be expressed as

〈k′s′|HSOC |ks〉 = δkk′(αk × σs′s)k (58)

αk =
~2

4m2c2

∫
WS

d3re−ikr∇V (r) eikr (59)

According to the simplest model of the Rashba-e�ect only the normal component of ∇V (r) is
taken into account,

∇V (r) ' ez
dV (z)

dz
(60)

which implies
αk = αez (61)

α =
~2

4m2c2

∫
WS

d3r
dV (z)

dz
(62)

and, correspondingly,
HSOC (k) = α(ez × σ)k = α (σxky − σykx) (63)

Neglecting the interaction with the bulk states, one has to solve the following eigenvalue prob-
lem, [

E0 +
~2k2

2m∗
+ α (σxky − σykx)

]
ψk = Ekψk , (64)

i.e., [
E0 + ~2k2

2m∗ α (ky + ikx)

α (ky − ikx) E0 + ~2k2

2m∗

]
ψk = Ekψk (65)
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⇓(
E0 +

~2k2

2m∗
− Ek

)2

− α2
(
k2

x + k2
y

)
= 0 (66)

⇓

E±k = E0 +
~2k2

2m∗
± α |k| .

2.1 Alternative representation

Taking any direction in the SBZ, k = k ê,

E±k =


E0 + ~2k2

2m∗ ± αk if k > 0

E0 + ~2k2

2m∗ ∓ αk if k < 0

. (67)

De�ning

E→k = E−k Θ (k) + E+
k [1−Θ (k)] (68)

=
~2k2

2m∗
− αk = E0 + ER +

~2 (k −∆k/2)2

2m∗
, (69)

and

E←k = E+
k Θ (k) + E−k [1−Θ (k)] (70)

=
~2k2

2m∗
+ αk = E0 + ER +

~2 (k + ∆k/2)2

2m∗
+ ER , (71)

with
~2∆k

2m∗
= α =⇒ ∆k =

2m∗α

~2
, (72)

and the Rashba energy,

ER = −~2 (∆k)2

8m∗
= −m

∗α2

2~2
, (73)

we indeed get two parabolas shifted left and right by ∆k/2 and downwards by ER.

3 Spin-polarization

By introducing k = k (cos (ϕ) , sin (ϕ)) , the Hamiltonian can be written as

Hk =

[
E0 + ~2k2

2m∗ iαke−iϕ

−iαkeiϕ E0 + ~2k2

2m∗

]
(74)
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and the eigenvectors are solutions of the equation[
∓αk iαke−iϕ

−iαkeiϕ ∓αk

]
ψ±k = 0 (75)

⇓[
∓1 ie−iϕ

−ieiϕ ∓1

]
ψ±k = 0 (76)

The solutions are

ψ±k =
1√
2

(
∓1
ieiϕ

)
. (77)

The spin-polarization of the eigenstates is de�ned by

−→
P k,± = 〈ψ±k |

−→σ |ψ±k 〉 (78)

⇓

P x
± =

1

2

(
∓1 −ie−iϕ

)( 0 1
1 0

)(
∓1
ieiϕ

)
= ± sinϕ (79)

P y
± =

1

2

(
∓1 −ie−iϕ

)( 0 −i
i 0

)(
∓1
ieiϕ

)
= ∓ cosϕ (80)

P z
± =

1

2

(
∓1 −ie−iϕ

)( 1 0
0 −1

)(
∓1
ieiϕ

)
= 0 (81)

i.e.,

−→
P k,± =

 ± sin (ϕ)
∓ cos (ϕ)

0

 =
1

k

 ±ky

∓kx

0

 (82)

Obviously, ∣∣∣−→P k,±

∣∣∣ = 1 (83)

−→
P k,± · k = 0 (84)

and −→
P k,− = −

−→
P k,+ . (85)

One can de�ne the helicity operator,

hk =
1

αk
HSOC (k) =

1

k
(σxky − σykx) =

(
0 ie−iϕ

−ieiϕ 0

)
(86)

for which
[hk, Hk] = 0 (87)
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and
h2

k = I (88)

thus, the eigenvalues of hk are ±1.

Since (
0 ie−iϕ

−ieiϕ 0

)(
∓1
ieiϕ

)
= ±

(
−1
ieiϕ

)
(89)

it follows that ψ±k are also the eigenfunctions of hk,

hkψ
±
k = ±ψ±k . (90)

J. Henk, A. Ernst, and P. Bruno, Phys. Rev. B (2003)

FIG. 2. Rashba spin-orbit interaction in a two-dimensional elec-
tron gas. The dispersions E�(k� �) of free electrons are shown for
�so�4/Bohr, k� ��(kx ,ky). The ‘‘inner’’ state �‘‘�’’ in Eq. �6��
shows strong dispersion, the ‘‘outer’’ weak dispersion �‘‘�’’ in Eq.
�6��. Both surfaces touch each other at k� ��0. For a better illustra-
tion, the Rashba effect is extremely exaggerated �compared to typi-
cal two-dimensional electron gases�.
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FIG. 3. L-gap surface states on Au�111�. �a� Dispersion of the
spin-orbit split surface states along K̄-�̄-K̄ �i.e., k� ��(kx,0)]. Open
�closed� symbols belong to the inner �outer� surface state. Gray
arrows point from the surface states at the Fermi energy EF to the
momentum distribution shown in panel b. The region of bulk bands
is depicted by gray areas. �b� Momentum distribution at EF . The
thick arrows indicate the in-plane spin polarization �Px and Py ,
according to Eq. �9��.
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